June 2025
·
2 Reads
A composite source model consists of an intrinsic state and an extrinsic observation. The fundamental performance limit of reproducing the intrinsic state is characterized by the indirect rate–distortion function. In a remote classification application, a source encoder encodes the extrinsic observation (e.g., image) into bits, and a source decoder plays the role of a classifier that reproduces the intrinsic state (e.g., label of image). In this work, we characterize the general structure of the optimal transition probability distribution, achieving the indirect rate–distortion function. This optimal solution can be interpreted as a “soft classifier”, which generalizes the conventionally adopted “classify-then-compress” scheme. We then apply the soft classification to aid the lossy compression of the extrinsic observation of a composite source. This leads to a coding scheme that exploits the soft classifier to guide reproduction, outperforming existing coding schemes without classification or with hard classification.