May 2020
·
126 Reads
·
9 Citations
Lecture Notes of the Institute for Computer Sciences
In practical applications, the data set we deal with is typically high dimensional, which not only affects training speed but also makes it difficult for people to analyze and understand. It is known as “the curse of dimensionality”. Therefore, dimensionality reduction plays a key role in the multidimensional data analysis. It can improve the performance of the model and assist people in understanding the structure of data. These methods are widely used in financial field, medical field e.g. adverse drug reactions and so on. In this paper, we present a number of dimension reduction algorithms and compare their strengths and shortcomings. For more details about these algorithms, please visit our Dagoo platform via www.dagoovis.com.