Volker Thiel's research while affiliated with Georg-August-Universität Göttingen and other places

Publications (223)

Article
Full-text available
The biotechnological application of microorganisms for rhizoremediation of contaminated sites requires the development of plant-microbe symbionts capable of plant growth promotion and hydrocarbon degradation. Here, we present a study aimed at isolating single microbial strains that are capable of promoting plant growth as well as rhizoremediation o...
Article
Full-text available
The formation of algal and cyanobacterial blooms caused by the eutrophication of water bodies is a growing global concern. To examine the impact of extreme weather events on blooms, eutrophication-related parameters (e.g., water temperature, nitrate, ammonium, nitrite, and soluble reactive phosphate (SRP)) were quantitatively assessed monthly over...
Article
Significance Organisms adjust their lipid compositions to environmental conditions like temperature. Some adaptations involve changes in ratios between unique lipids, which can still be determined after millions of years. Analyzing such lipid ratios in ancient sediments can be used for climate reconstruction. One example is the Long chain Diol Inde...
Article
The slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting rhizoremediation through both plant growth-promo...
Article
Full-text available
The global methane (CH4) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10) of the anaerobic oxidation of CH4 (AOM) – a ubiquitous p...
Preprint
Full-text available
The biotechnological application of microorganisms for rhizoremediation of contaminated sites requires the development of plant-microbe symbionts capable of plant growth promotion and hydrocarbon degradation. Studies focusing on microbial consortia are often difficult to reproduce, thereby necessitating the need for culturable single bacterial spec...
Preprint
Full-text available
The slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting both plant growth and hydrocarbon degradation is...
Article
Anaerobic oxidation of methane (AOM) is a globally important CH4 sink. However, the AOM pathways in paddy soils, the largest agricultural source of methane emissions (31 Mio tons per year) are not yet well described. Here, a combination of 13C isotope tracer, phospholipid fatty acids (PLFA) analyses, and microbial community analysis was used to ide...
Article
Full-text available
It is widely hypothesised that primeval life utilised small organic molecules as sources of carbon and energy. However, the presence of such primordial ingredients in early Earth habitats has not yet been demonstrated. Here we report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barit...
Chapter
Methane produced by thermal decomposition of organic matter, biological methanogenesis, and abiotic reactions plays a prominent role in biogeochemical cycles and climate forcing. There are, however, microbiological processes that efficiently mitigate its release into Earth’s surface environments. Lipid biomarkers are powerful tracers for methanotro...
Article
Full-text available
Sediments from stratified marine environments often show an enhanced preservation of organic matter (OM) which is attributed to the limitation, or absence, of oxygen in the bottom waters and surface sediments. Yet there is still a limited knowledge about the changes that the associated biomarker signals undergo in the different parts of a stratifie...
Article
Full-text available
Exceptionally well-preserved fossils are frequently encased by carbonate concretions. The initial steps of their formation in marine and freshwater sediments are induced by microbial activity. The role of the involved microbial communities, however, is not well understood. In this study, siderite (FeCO3) formation in microbial microcosms is observe...
Article
Full-text available
Microbial mats are self-sustaining benthic ecosystems composed of highly diverse microbial communities. It has been proposed that microbial mats were widespread in Proterozoic marine environments, prior to the emergence of bioturbating organisms at the Precambrian–Cambrian transition. One characteristic feature of Precambrian biomarker records is t...
Article
The Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2020 rover (to be landed in March 2021) utilizes pyrolysis gas chromatography-mass spectrometry (GC-MS) with the aim to detect organic molecules in martian (sub-) surface materials. Pyrolysis, however, may thermally destroy and transform organic matter depending on the temperature and na...
Conference Paper
The 3.42 Ga Buck Reef Chert (Barberton Greenstone Belt, South Africa) provides a rare sequence of exceptionally well preserved silicified microbial mats, containing abundant kerogen. We investigated this macromolecular organic material (cherts from drill cores, Barberton Drilling Project - Peering into the Cradle of Life) on structural (microscopy,...
Article
The Mars Organic Molecule Analyzer (MOMA) instrument on board ESA's ExoMars 2020 rover will be essential in the search for organic matter. MOMA applies gas chromatography-mass spectrometry (GC-MS) techniques that rely on thermal volatilization. Problematically, perchlorates and chlorates in martian soils and rocks become highly reactive during heat...
Article
Full-text available
A study was carried out to gain quantitative information on the diet-dependent faecal microbial biomass of dairy cows, especially on the biomass fractions of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. Groups of high-yield, low-yield and non-lactating cows were investigated at four different farms. A mean faecal microbial biomass C (...
Article
Full-text available
Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of the earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular bios...
Preprint
Full-text available
Microbial mats are self-sustaining benthic ecosystems composed of highly diverse microbial communities. It has been proposed that microbial mats were widespread in Proterozoic marine environments, prior to the emergence of bioturbating organisms at the Precambrian-Cambrian transition. One characteristic feature of Precambrian biomarker records is t...
Article
The anaerobic oxidation of methane (AOM) removes most of the biologically produced methane (CH4) from marine ecosystems before it enters the atmosphere and thus mitigates greenhouse gas emissions. As compared to marine environments, surprisingly little is known about the role of AOM in terrestrial ecosystems. Particularly, how AOM controls the CH4...
Article
Full-text available
Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we di...
Article
Full-text available
Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular biosigna...
Article
Full-text available
Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early...
Conference Paper
Full-text available
Text: The anaerobic oxidation of methane (AOM) in sediments is a globally important ecological process that removes most of the biologically produced methane (CH 4), before it can enter the atmosphere and thus contribute to the greenhouse gas inventory. As compared to marine settings, surprisingly little is known about the role of AOM in terrestria...
Article
Full-text available
Magmatic sill intrusions into organic-rich sediments cause the release of thermogenic CH4 and CO2. Pore fluids from the Guaymas Basin (Gulf of California), a sedimentary basin with recent magmatic activity, were investigated to constrain the link between sill intrusions and fluid seepage as well as the timing of sill-induced hydrothermal activity....
Article
Full-text available
Marine microorganisms trapped in amber are extremely rare in the fossil record, and the few existing inclusions recovered so far originate from very few pieces of Cretaceous amber from France. Marine macroscopic inclusions are also very rare and were recently described from Cretaceous Burmese amber and Early Miocene Mexican amber. Whereas a coastal...
Article
Full-text available
Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discover...
Article
Eukaryotic steranes are typically absent or occur in very low concentrations in Precambrian sedimentary rocks. However, it is as yet unclear whether this may reflect low source inputs or a preservational bias. For instance, it has been proposed that eukaryotic lipids were profoundly degraded in benthic microbial mats that were ubiquitous prior to t...
Article
Available under: https://onlinelibrary.wiley.com/doi/10.1111/gbi.12284 Fossil derivatives of isorenieratene, an accessory pigment in brown‐colored green sulfur bacteria, are often used as tracers for photic zone anoxia through Earth's history, but their diagenetic behavior is still incompletely understood. Here, we assess the preservation of isor...
Article
Full-text available
Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with...
Article
Lipid biomarkers are commonly used for tracking life through Earth’s history and are also gaining in importance in the search for extraterrestrial life. However, some lipids may also be formed in-situ via abiotic Fischer-Tropsch-type (FTT) reactions. These processes have been considered as a source of prebiotic organic matter. Here we report on a F...
Article
Two carbonate- and phosphate-rich concretions from Early Jurassic strata at Buttenheim (Bavaria, Germany) and their immediate claystone host rocks were analysed to study the mechanisms of biomarker preservation in concretions. Superimposed on a common sedimentary background signal, distinctive biomarkers reflect microbial processes involved in conc...
Article
Full-text available
The Guaymas Basin in the Gulf of California is an ideal site to test the hypothesis that magmatic intrusions into organic-rich sediments can cause the release of large amounts of thermogenic methane and CO2 that may lead to climate warming. In this study pore fluids close (~ 500 m) to a hydrothermal vent field and at cold seeps up to 20 km away fro...
Article
Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga old Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, w...
Article
The Khatyspyt Formation in Arctic Siberia is one of only two carbonate settings with Ediacara-type fossils. As a potential hydrocarbon source rock, it contains abundant molecular fossils that may help to expand our understanding of these ecosystems. Unfortunately, however, the molecular fossil record in geological materials is commonly biased by se...
Article
Lipid biomarkers have been extensively applied for tracing organisms and evolutionary processes through Earth's history. They have become especially important for the reconstruction of early life on Earth and, potentially, for the detection of life in the extraterrestrial realm. However, it is not always clear how exactly biomarkers reflect a paleo...
Article
During the past two decades, a plethora of fossil micro-organisms have been described from various Triassic to Miocene ambers. However, in addition to entrapped microbes, ambers commonly contain microscopic inclusions that sometimes resemble amoebae, ciliates, microfungi, and unicellular algae in size and shape, but do not provide further diagnosti...
Article
Full-text available
aleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues to the existence of early life on Earth, such as stromatolites, putative microfossils and geochemical signatures of microbial activity. However, some of these features have also been explained by non-biological processes. Further lines of evidence are therefor...
Article
The degradation and preservation affecting the biomarker record of ancient metazoa are not fully understood. We report on a five month experiment on the fate of fatty acids (FAs) during the degradation of recent whale vertebrae (Phocoena phocoena). Whale bones were analysed for extractable FAs and macromolecularly bound n-acyl compounds. Fresh bone...
Article
Phototrophic mats (microbial mats with a phototrophic top layer) are complex systems in terms of microbial diversity, biogeochemical cycles and organic matter (OM) turnover. It has been proposed that these mats were a predominant life form in Proterozoic shallow water settings, prior to the emergence of bioturbating organisms in the Ediacaran-Cambr...
Conference Paper
Full-text available
The Shibantan Member (Dengying Formation, Ediacaran Period) is one of only few carbonate settings with Ediacara-type fossils worldwide (e.g. Ding & Chen, 1981; Sun, 1986; Xiao et al., 2005; Shen et al., 2009; Chen et al., 2014). However, only little is known about the sedimentology and biogeochemistry of the environments in which these organisms th...
Article
Full-text available
Processes of iron mineralization are of great significance to the understanding of Early-Earth geochemistry. Of specific interest are processes at circumneutral pH, where chemical oxidation of Fe can outcompete biological oxidation. To better understand microbially-induced mineral formation and the composition of the involved microbial communities,...
Article
Full-text available
Conditioning films and biofilms forming on surfaces of solid materials exposed to aqueous media play a key role in in the interaction between the geo- and biospheres. In this study, time-of-flight secondary ion mass spectrometry and scanning electron microscopy were used to investigate the time scale, mode of formation, and chemistry of conditionin...
Article
Full-text available
Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At circumneutral pH, both processes occur at similar rates and co...
Article
Full-text available
Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE). TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signa...
Article
Full-text available
The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in situ pump. Lipid biomarkers were extrac...
Article
Full-text available
The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in situ pump. Lipid biomarkers were extrac...
Article
The Shibantan Member (Dengying Formation, South China) represents one of only two carbonate settings with Ediacara-type organisms and offers a rare opportunity to study the biogeochemistry of these ecosystems. To evaluate possibilities and limitations for future biomarker studies on fossil-bearing outcrop samples of the Shibantan Member, we analyse...
Article
Despite the importance of palaeoecosystems with Ediacara-type fossils for the early evolution of metazoans, only little is known about the interplay of geological and biological processes in these environments. The reason is that sedimentary structures, biogenic structures and (bio-) geochemical signatures (e.g. hydrocarbon biomarkers) are commonly...
Article
Symbiont-bearing and non-symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non-symbiotic biv...
Article
The taphonomic and diagenetic processes by which organic substances are preserved in animal remains are not completely known and the originality of putative metazoan biomolecules in fossil samples is a matter of scientific discussion. Here we report on biomarker information preserved in a fossil whale bone from an Oligocene phosphatic limestone (El...
Article
Microwave, ultrasound and Bligh & Dyer extraction methods were tested for the yield of bacteriohopanepolyols (BHPs) from sediments and their potential to bias compound distributions. Differences in the concentration of abundant BHPs were not apparent for the three methods. However, the two phase solvent Bligh & Dyer extraction method generally show...
Article
Full-text available
The 450 m deep Äspö Hard Rock Laboratory (Äspö HRL), run by the Swedish Nuclear Fuel and Waste Management Co. (SKB) offers a unique opportunity to access microbial systems within Precambrian, mostly granodioritic rocks of the Baltic Shield. Biofilms and microbial mats at a deep groundwater seepage site and an associated pond exhibit a large diversi...
Conference Paper
Full-text available
Background / Purpose: Sponges are considered to be the most ancient metazoans, but their emergence is as yet not well constrained. To test the utility of biomarkers as a tool to elucidate the origin and evolution of sponges, the preservation potential of three classes of sponge-derived lipids in the bitumen fractions of different fossilized spong...