Vladislav Perelygin’s research while affiliated with National Research University Higher School of Economics and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Graphs of AUC-ROC values measured for different machine learning methods. Each value at the X axis corresponds to a phenotype with a certain contribution of epistasis. For each AUC-ROC value, the boundaries of the 95% confidence interval are indicated. Each graph corresponds to a different dataset composition and feature-to-instance ratio. In all cases, 3-loci epistasis model with heritability of 0.25 was used.
Distributions of metrics measured for different machine learning models. Three theoretical forms of epistasis and their corresponding datasets were generated using GAMETES (LR, Lasso regression; GB, Gradient Boosting).
Deep learning captures the effect of epistasis in multifactorial diseases
  • Article
  • Full-text available

January 2025

·

12 Reads

Vladislav Perelygin

·

Alexey Kamelin

·

·

[...]

·

Maria Poptsova

Background Polygenic risk score (PRS) prediction is widely used to assess the risk of diagnosis and progression of many diseases. Routinely, the weights of individual SNPs are estimated by the linear regression model that assumes independent and linear contribution of each SNP to the phenotype. However, for complex multifactorial diseases such as Alzheimer’s disease, diabetes, cardiovascular disease, cancer, and others, association between individual SNPs and disease could be non-linear due to epistatic interactions. The aim of the presented study is to explore the power of non-linear machine learning algorithms and deep learning models to predict the risk of multifactorial diseases with epistasis. Methods Simulated data with 2- and 3-loci interactions and tested three different models of epistasis: additive, multiplicative and threshold, were generated using the GAMETES. Penetrance tables were generated using PyTOXO package. For machine learning methods we used multilayer perceptron (MLP), convolutional neural network (CNN) and recurrent neural network (RNN), Lasso regression, random forest and gradient boosting models. Performance of machine learning models were assessed using accuracy, AUC-ROC, AUC-PR, recall, precision, and F1 score. Results First, we tested ensemble tree methods and deep learning neural networks against LASSO linear regression model on simulated data with different types and strength of epistasis. The results showed that with the increase of strength of epistasis effect, non-linear models significantly outperform linear. Then the higher performance of non-linear models over linear was confirmed on real genetic data for multifactorial phenotypes such as obesity, type 1 diabetes, and psoriasis. From non-linear models, gradient boosting appeared to be the best model in obesity and psoriasis while deep learning methods significantly outperform linear approaches in type 1 diabetes. Conclusion Overall, our study underscores the efficacy of non-linear models and deep learning approaches in more accurately accounting for the effects of epistasis in simulations with specific configurations and in the context of certain diseases.

Download

Figure 2
Deep Learning captures the effect of epistasis in multifactorial diseases

March 2024

·

105 Reads

Background Polygenic risk score (PRS) prediction is widely used to assess the risk of diagnosis and progression of many diseases. Routinely, the weights of individual SNPs are estimated by the linear regression model that assumes independent and linear contribution of each SNP to the phenotype. However, for complex multifactorial diseases such as Alzheimer's disease, diabetes, cardiovascular disease, cancer, and others, association between individual SNPs and disease could be non-linear due to epistatic interactions. The aim of the presented study is to explore the power of non-linear machine learning algorithms and deep learning models to predict the risk of multifactorial diseases with epistasis. Results First, we tested ensemble tree methods and deep learning neural networks against LASSO linear regression model on simulated data with different types and strength of epistasis. The results showed that with the increase of strength of epistasis effect, non-linear models significantly outperform linear. Then the higher performance of non-linear models over linear was confirmed on real genetic data for multifactorial phenotypes such as obesity, type 1 diabetes, and psoriasis. From non-linear models, gradient boosting appeared to be the best model in obesity and psoriasis while deep learning methods significantly outperform linear approaches in type 1 diabetes. Conclusions Overall, our study underscores the efficacy of non-linear models and deep learning approaches in more accurately accounting for the effects of epistasis in simulations with specific configurations and in the context of certain diseases.