Veaux Evelyn Rosengarten's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publication (1)
Neural networks can be viewed as nonlinear models, where the weights are parameters to be estimated. In general two parameter estimation methods are used: nonlinear regression, corresponding to the standard backpropagation algorithm, and Bayesian estimation, in which the model parameters are considered as being random variables drawn from a prior d...
Citations
... Therefore, even though the stochastic gradient descent approach has proven to obtain good results while minimizing computational costs, research on neural interval models has also focused on evolutionary computing solutions, such as Genetic Algorithms [67] and Particle Swarm Optimization [68] [69] . Additionally, some niche cases also exist where the prediction interval construction method does not allow for any of these solutions, and instead requires a specific training methodology, such as Bayesian approaches [73] , which rely on Markov Chain Monte Carlo sampling algorithms. ...