Vassilis I Zannis's research while affiliated with Boston Medical Center and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (155)
Apolipoprotein A-I (apoA-I), the main protein component of High-Density Lipoprotein (HDL), is modified in plasma and the arterial wall by various enzymes. Myeloperoxidase (MPO), a leukocyte-derived peroxidase, is highly expressed during inflammation and associates with HDL reducing its functionality and contributing to atherosclerosis. In the prese...
Introduction
Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective prop...
Background:
High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I) have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular...
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates the production of amyloid-beta peptide (Aβ) which is central to the pathogenesis of Alzheimer's disease (AD). Changes in brain cholesterol homeostasis have been suggested to affect Aβ metabolism. Cholesterol homeostasis is maintained in the brain by apolipoprotein E (apoE)....
In this review, we focus on the pathway of biogenesis of HDL, the essential role of apoA-I, ATP binding cassette transporter A1 (ABCA1), and lecithin: cholesterol acyltransferase (LCAT) in the formation of plasma HDL; the generation of aberrant forms of HDL containing mutant apoA-I forms and the role of apoA-IV and apoE in the formation of distinct...
Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to inv...
Macrophage ABCA1 effluxes lipid and has anti-inflammatory activity. The syntrophins, which are cytoplasmic PDZ protein scaffolding factors, can bind ABCA1 and modulate its activity. However, much of the data assessing the function of the ABCA1/syntrophin interaction is based on over-expression in non-macrophage cells. To assess endogenous complex f...
Objective:
Mutations in human apolipoprotein A-I (apoA-I) are associated with low high-density lipoprotein (HDL) cholesterol levels and pathological conditions such as premature atherosclerosis and amyloidosis. In this study we functionally characterized two natural human apoA-I mutations, L141RPisa and L159RFIN, in vivo.
Methods:
We generated t...
Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with...
Aberrant levels and function of the potent anti-inflammatory high-density lipoprotein (HDL) and accelerated atherosclerosis have been reported in patients with autoimmune inflammatory diseases. Whether HDL affects the development of an autoimmune response remains elusive. In this study, we used apolipoprotein A-I-deficient (apoA-I-/-) mice, charact...
We have investigated how the natural LCAT[T147I] and LCAT[P274S] mutations affect the pathway of biogenesis of HDL. Gene transfer of WT LCAT in LCAT-/- mice increased 11.8 fold the plasma cholesterol whereas the LCAT[T147I] and LCAT[P274S] mutants caused a 5.2 and 2.9 fold increase respectively. The LCAT[P274S] and the WT LCAT caused a monophasic d...
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation;...
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism.
The biogenesis of HDL initially requires functional interaction of apoA-I with the...
Introduction: The K146N/R147W substitutions in human apolipoproteinE3 (apoE3) have been associated with a dominant form of type III hyperlipoproteinemia which is expressed at an early age.
Methods: The effects of the K146N,R147W substitutions on the lipid and lipoprotein profiles and the HDL phenotypes were studied by adenovirus mediated gene trans...
Low plasma levels of high density lipoprotein (HDL) cholesterol as well as apolipoprotein A-I (ApoA-I) are associated with increased risk of coronary heart disease. HDL and ApoA-I exert multiple potentially anti-atherogenic activities. Several of them the including stimulation of cholesterol efflux from macrophage foam cells for reverse cholesterol...
The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-/- or apoA-I-/-xapoE-/- mice exacerb...
We have studied the significance of four hydrophobic residues within the 225-230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I-/- mice decreased plasma cholesterol, HDL cholesterol and apoA-I levels. When expre...
We have investigated the significance of hydrophobic and charged residues 218-226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I-/- mice decreased plasma cholesterol and apoA-I levels to 15% of WT control, and generated preβ and...
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1...
Overexpression of ApoE4[Leu261Ala/Trp264Ala/Phe265Ala] mutant (ApoE4mutC) prevents hypertriglyceridemia and promotes formation of spherical ApoE-containing HDL in ApoE(-/-) or ApoA-I(-/-) mice. Although, a similar phenotype was observed with ApoE2[Leu261Ala/Trp264Ala/Phe265Ala] (ApoE2mutC), small differences in cholesterol distribution to IDL/LDL,...
Abstract Objective: To establish the role of apolipoprotein (apo) A-IV, ATP-binding cassette transporter-A1 (ABCA1) and lecithin:cholesterol acetyl transferase (LCAT) in the biogenesis of apoA-IV containing HDL (HDL-A-IV) using different mouse models. Methods and Results: Adenovirus-mediated gene transfer of apoA-IV in apoA-I-/- mice did not change...
Physiological levels of wild-type (wt) apolipoprotein E (apoE) in plasma mediate the clearance of cholesterol-rich atherogenic lipoprotein remnants while higher than normal plasma apoE concentrations fail to do so and trigger hypertriglyceridemia. This property of wt apoE reduces significantly its therapeutic value as a lead biological for the trea...
Apolipoprotein (apo) E4 isoform, a major risk factor for Alzheimer disease (AD), is more susceptible to proteolysis than apoE2 and apoE3 isoforms. ApoE4 fragments have been found in AD patients' brain. In the present study, we examined the effect of full-length apoE4 and apoE4 fragments apoE4[Δ(186-299)] and apoE4[Δ(166-299)] on inflammation in hum...
The cAMP-elevating A(2b) adenosine receptor (A(2b)AR) controls inflammation via its expression in bone marrow cells.
Atherosclerosis induced by a high-fat diet in apolipoprotein E-deficient mice was more pronounced in the absence of the A(2b)AR. Bone marrow transplantation experiments indicated that A(2b)AR bone marrow cell signals alone were not s...
Background:
Apolipoprotein E (apoE) is a major protein of the lipoprotein transport system that plays important roles in lipid homeostasis and protection from atherosclerosis. ApoE is characterized by structural plasticity and thermodynamic instability and can undergo significant structural rearrangements as part of its biological function. Mutati...
Apolipoprotein A-I (apoA-I), the main protein component of high density lipoprotein (HDL), is well recognized for its antiatherogenic, antioxidant, and antiinflammatory properties. Here, we report a novel role for apoA-I as a host defense molecule that contributes to the complement-mediated killing of an important gastrointestinal pathogen, Gram-ne...
Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and...
In this study, we investigated the role of positively and negatively charged amino acids within the 89-99 region of apolipoprotein A-I (apoA-I), which are highly conserved in mammals, on plasma lipid homeostasis and the biogenesis of HDL. We previously showed that deletion of the 89-99 region of apoA-I increased plasma cholesterol and phospholipids...
INTRODUCTION. We have studied the functions of truncated apoE4 forms in vitro and in vivo in order to identify the domains of apoE4 required for the biogenesis of apoE-containing high-density lipoprotein (HDL). RESULTS. We have found that apoE4-185, -202, -229, or -259 could promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol...
High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transen...
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E(-/-) mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly in...
J. Neurochem. (2010) 115, 873–884.
Apolipoprotein E (apoE) plays a crucial role in lipid transport in circulation and the brain. The apoE4 isoform is a major risk factor for Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than other apoE isoforms and apoE4 fragments have been found in brains of AD patients. These apoE4 fragments...
Apolipoprotein M (apoM) plays an important role in the biogenesis and the metabolism of anti-atherogenic HDL particles in
plasma and is expressed primarily in the liver and the kidney. We investigated the role of hormone nuclear receptors in apoM gene regulation in hepatic cells. Overexpression via adenovirus-mediated gene transfer and siRNA-mediat...
We previously observed that treatment of mice with a dominant negative form of cJun (dn-cJun) increased the expression of genes involved in lipid metabolism and modulated the expression of nine microRNAs (miR). To investigate the potential effect of these miRs on the expression of the genes of lipid metabolism, we performed studies in cultured HepG...
In humans, the apolipoprotein A-I (apoA-I) gene is expressed abundantly in liver and intestine, and to a lesser extent in other tissues. Following synthesis, apoA-I is secreted in plasma and proceeds to participate in the formation of high density lipoprotein (HDL). In the absence of apoA-I, HDL is not formed.
In this chapter, we review in detail h...
In humans and animal models, high plasma concentrations of apolipoprotein (apo) E are associated with hypertriglyceridemia. It has been shown that overexpression of human wild-type (WT) apoE4 in apoE-deficient mice induces hypertriglyceridemia. In contrast, overexpression of an apoE4 variant, apoE4-mut1 (apoE4(L261A, W264A, F265A, L268A, V269A)), d...
Apolipoprotein AI (apoAI) is the major protein constituent of high density lipoprotein. Rare mutations in APOAI may associate with:
1.low HDL cholesterol (HDL-C) with an unclear association to ischemic heart disease (IHD);
2.hereditary amyloidosis, sometimes characterized by amyloid deposition in the vascular wall and/or in the heart and misdiag...
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease and has been associated with a variety of neuropathological processes. ApoE4 C-terminally truncated forms have been found in brains of Alzheimer's disease patients. Structural rearrangements in apoE4 are known to be key to its physiological functions. To understand the effect of C-t...
Using adenovirus-mediated gene transfer in apolipoprotein A-I (apoA-I)-deficient mice, we have established that apoA-I mutations inhibit discrete steps in a pathway that leads to the biogenesis and remodeling of high-density lipoprotein (HDL). To this point, five discrete categories of apoA-I mutants have been characterized that may affect the inte...
Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1-5) that inhibit SR-BI-dependent...
The lipid transporter ATP binding cassette transporter A1 (ABCA1) promotes the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I and thus initiates the biogenesis of high-density lipoprotein (HDL). The expression of the ABCA1 gene is controlled, coordinately with other genes of HDL metabolism, by liver X receptor/ret...
To explain the etiology and find a mode of therapy of genetically determined low levels of high-density lipoprotein (HDL), we have generated recombinant adenoviruses expressing apolipoprotein A-I (apoA-I)(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN and studied their properties in vitro and in vivo. Both mutants were secreted efficiently from cells but...
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R1...
Overexpression of apolipoprotein E (apoE) induces hypertriglyceridemia in apoE-deficient mice, which is abrogated by deletion of the carboxy-terminal segment of residues 260-299. We have used adenovirus-mediated gene transfer in apoE-/- and apoA-I-/- mice to test the effect of three sets of apoE mutations within the region of residues 261-265 on th...
c-Jun is a transcription factor activated by phosphorylation by the stress-activated protein kinase/c-Jun N-terminal kinase pathway in response to extracellular signals and cytokines. We show that adenovirus-mediated gene transfer of the dominant negative form of c-Jun (dn-c-Jun) in C57BL/6 mice increased greatly apoE hepatic mRNA and plasma levels...
The atheroprotective role of apolipoprotein E (apoE) is well established. During inflammation, expression of apoE in macrophages is reduced leading to enhanced atheromatous plaque development. In the present study, we investigated the signaling pathways involved in the repression of apoE gene expression in response to lipopolysaccharide (LPS) treat...
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have in...
We have investigated the ability of apoE (apolipoprotein E) to participate in the biogenesis of HDL (high-density lipoprotein) particles in vivo using adenovirus-mediated gene transfer in apoA-I-/- (apolipoprotein A-I) or ABCA1-/- (ATP-binding cassette A1) mice. Infection of apoA-I-/- mice with 2x10(9) pfu (plaque-forming units) of an apoE4-express...
HNF-4 (hepatocyte nuclear factor 4) is a key regulator of liver-specific gene expression in mammals. We have shown previously that the activity of the human APOC3 (apolipoprotein C-III) promoter is positively regulated by the anti-inflammatory cytokine TGFbeta (transforming growth factor beta) and its effectors Smad3 (similar to mothers against dec...
Mutations in ATP-binding cassette transporter A1 (ABCA1) cause Tangier disease and familial hypoalphalipoproteinemia, resulting in low to absent plasma high-density lipoprotein cholesterol levels. However, wide variations in clinical lipid phenotypes are observed in patients with mutations in ABCA1. We hypothesized that the various lipid phenotypes...
The concentration, composition, shape, and size of plasma high-density lipoprotein (HDL) are determined by numerous proteins that influence its biogenesis, remodeling, and catabolism. The discoveries of the HDL receptor (scavenger receptor class B type I, SR-BI) and the ABCA1 (ATP-binding cassette transporter A1) lipid transporter provided two miss...
We have used adenovirus-mediated gene transfer and bolus injection of purified apolipoprotein E (apoE) in mice to determine the contribution of LDL receptor family members in the clearance of apoE-containing lipoproteins in vivo and the factors that trigger hypertriglyceridemia. A low dose [5 x 10(8) plaque-forming units (pfu)] of an adenovirus exp...
To identify residues and segments in the central region of apolipoprotein A-I (apoA-I) that are important for the protein structure and stability, we studied the effects of four double charge ablations, D102A/D103A, E110A/E111A, R116V/K118A, and R160V/H162A, and two deletion mutations, Delta(61-78) and Delta(121-142), on the conformation and stabil...
We have analyzed the effect of charged to neutral amino acid substitutions around the kinks flanking helices 4 and 6 of apoA-I and of the deletion of helix 6 on the in vivo activity of LCAT and the biogenesis of HDL. The LCAT activation capacity of apoA-I in vitro was nearly abolished by the helix 6 point (helix 6P-apoA-I[R160V/H162A]) and deletion...
Apolipoprotein E (apoE) and the lipoprotein receptor SR-BI play critical roles in lipid and lipoprotein metabolism. We have examined the cholesterol efflux from wild-type (WT) and mutant forms of SR-BI expressed in ldlA-7 cells using reconstituted discoidal particles consisting of apoE, 1-palmitoyl-2-oleoyl-l-phospatidylcholine (POPC), and choleste...
Adenovirus-mediated overexpression of human apolipoprotein E (apoE) induces hyperlipidemia by stimulating the VLDL-triglyceride (TG) production rate and inhibiting the LPL-mediated VLDL-TG hydrolysis rate. Because apoC-III is a strong inhibitor of TG hydrolysis, we questioned whether Apoc3 deficiency might prevent the hyperlipidemia induced by apoE...
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol an...
We have isolated and characterized the apoA-I gene from a λ L47.1 genomic library constructed with DNA obtained from the lymphocytes of a Tangier disease patient. The DNA-derived protein sequence of Tangier apoA-I was found to be identical to normal apoA-I. Transfection of mouse C127 cells with a recombinant vector containing the Tangier apoA-I gen...
To identify the residues in the carboxyl-terminal region 260-299 of human apolipoprotein E (apoE) that contribute to hypertriglyceridemia, two sets of conserved, hydrophobic amino acids between residues 261 and 283 were mutated to alanines, and recombinant adenoviruses expressing these apoE mutants were generated. Adenovirus-mediated gene transfer...
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice express...
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HD...
We have generated and studied the pattern of expression of transgenic mouse lines carrying the human apoA-I and apoCIII gene cluster mutated at different sites. In two lines, we have either mutated the hormone-response element (HRE) of element G of the apoCIII enhancer or the C/EBP binding site of the proximal apoA-I promoter. In a third line, we h...
This review clarifies the functions of key proteins of the chylomicron and the HDL pathways.
Adenovirus-mediated gene transfer of several apolipoprotein (apo)E forms in mice showed that the amino-terminal 1-185 domain of apoE can direct receptor-mediated lipoprotein clearance in vivo. Clearance is mediated mainly by the LDL receptor. The carboxyl-t...
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking...
DNA binding and mutagenesis in vitro established that the -67/-55 region of the apoA-II (apolipoprotein A-II) promoter contains a thyroid HRE (hormone response element), which strongly binds RXRalpha (retinoid X receptor alpha)/T(3)Rbeta (thyroid receptor beta) heterodimers and weakly T(3)Rbeta homodimers, but does not bind other homo- or heterodim...
We have studied the contribution of the carboxy terminal domains of lipid-free apoE isolated from apoE-expressing cell cultures in binding to phospholipids and have determined the affinities of reconstituted POPC-apoE particles for the apoER2. It was found that the initial rate of association of apoE2, apoE3, apoE4, and a mutant form apoE4R158M to...
Apolipoprotein E2, which has an R158 for C substitution, has reduced affinity for the LDL receptor and is associated with type III hyperlipoproteinemia in humans. Consistent with these observations, we have found that following adenovirus-mediated gene transfer, full-length apoE2 aggravates the hypercholesterolemia and induces hypertriglyceridemia...