Trevor Darrell's research while affiliated with University of California, Berkeley and other places

Publications (647)

Preprint
Test-time adaptation harnesses test inputs to improve the accuracy of a model trained on source data when tested on shifted target data. Existing methods update the source model by (re-)training on each target domain. While effective, re-training is sensitive to the amount and order of the data and the hyperparameters for optimization. We instead u...
Preprint
Action in video usually involves the interaction of human with objects. Action labels are typically composed of various combinations of verbs and nouns, but we may not have training data for all possible combinations. In this paper, we aim to improve the generalization ability of the compositional action recognition model to novel verbs or novel no...
Article
The recently advanced unsupervised learning approaches use the siamese-like framework to compare two "views" from the same image for learning representations. Making the two views distinctive is a core to guarantee that unsupervised methods can learn meaningful information. However, such frameworks are sometimes fragile on overfitting if the augmen...
Article
Recent progress in image recognition has stimulated the deployment of vision systems at an unprecedented scale. As a result, visual data are now often consumed not only by humans but also by machines. Existing image processing methods only optimize for better human perception, yet the resulting images may not be accurately recognized by machines. T...
Preprint
Full-text available
This technical report describes the SViT approach for the Ego4D Point of No Return (PNR) Temporal Localization Challenge. We propose a learning framework StructureViT (SViT for short), which demonstrates how utilizing the structure of a small number of images only available during training can improve a video model. SViT relies on two key insights....
Preprint
Full-text available
Recent action recognition models have achieved impressive results by integrating objects, their locations and interactions. However, obtaining dense structured annotations for each frame is tedious and time-consuming, making these methods expensive to train and less scalable. At the same time, if a small set of annotated images is available, either...
Preprint
Natural language applied to natural 2D images describes a fundamentally 3D world. We present the Voxel-informed Language Grounder (VLG), a language grounding model that leverages 3D geometric information in the form of voxel maps derived from the visual input using a volumetric reconstruction model. We show that VLG significantly improves grounding...
Preprint
Machine learning has advanced dramatically, narrowing the accuracy gap to humans in multimodal tasks like visual question answering (VQA). However, while humans can say "I don't know" when they are uncertain (i.e., abstain from answering a question), such ability has been largely neglected in multimodal research, despite the importance of this prob...
Preprint
Visual attention helps achieve robust perception under noise, corruption, and distribution shifts in human vision, which are areas where modern neural networks still fall short. We present VARS, Visual Attention from Recurrent Sparse reconstruction, a new attention formulation built on two prominent features of the human visual attention mechanism:...
Preprint
Full-text available
Test-time adaptation is a special setting of unsupervised domain adaptation where a trained model on the source domain has to adapt to the target domain without accessing source data. We propose a novel way to leverage self-supervised contrastive learning to facilitate target feature learning, along with an online pseudo labeling scheme with refine...
Preprint
Full-text available
Recent state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This free form of supervision ensures high generality and usability of the learned visual models, based on extensive heuristics on data collection to cover as many visual concepts as possi...
Article
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving. We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence...
Preprint
Full-text available
We present a framework for modeling interactional communication in dyadic conversations: given multimodal inputs of a speaker, we autoregressively output multiple possibilities of corresponding listener motion. We combine the motion and speech audio of the speaker using a motion-audio cross attention transformer. Furthermore, we enable non-determin...
Preprint
Training a referring expression comprehension (ReC) model for a new visual domain requires collecting referring expressions, and potentially corresponding bounding boxes, for images in the domain. While large-scale pre-trained models are useful for image classification across domains, it remains unclear if they can be applied in a zero-shot manner...
Preprint
Full-text available
Training automated agents to complete complex tasks in interactive environments is challenging: reinforcement learning requires careful hand-engineering of reward functions, imitation learning requires specialized infrastructure and access to a human expert, and learning from intermediate forms of supervision (like binary preferences) is time-consu...
Preprint
Full-text available
This paper shows that self-supervised visual pre-training from real-world images is effective for learning motor control tasks from pixels. We first train the visual representations by masked modeling of natural images. We then freeze the visual encoder and train neural network controllers on top with reinforcement learning. We do not perform any t...
Preprint
While real world challenges typically define visual categories with language words or phrases, most visual classification methods define categories with numerical indices. However, the language specification of the classes provides an especially useful prior for biased and noisy datasets, where it can help disambiguate what features are task-releva...
Preprint
Full-text available
In order for humans to confidently decide where to employ RL agents for real-world tasks, a human developer must validate that the agent will perform well at test-time. Some policy interpretability methods facilitate this by capturing the policy's decision making in a set of agent rollouts. However, even the most informative trajectories of trainin...
Preprint
Full-text available
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hier...
Preprint
In today's era of digital misinformation, we are increasingly faced with new threats posed by video falsification techniques. Such falsifications range from cheapfakes (e.g., lookalikes or audio dubbing) to deepfakes (e.g., sophisticated AI media synthesis methods), which are becoming perceptually indistinguishable from real videos. To tackle this...
Preprint
Detecting out-of-context media, such as "miscaptioned" images on Twitter, often requires detecting inconsistencies between the two modalities. This paper describes our approach to the Image-Text Inconsistency Detection challenge of the DARPA Semantic Forensics (SemaFor) Program. First, we collect Twitter-COMMs, a large-scale multimodal dataset with...
Preprint
Full-text available
Controllable image synthesis models allow creation of diverse images based on text instructions or guidance from an example image. Recently, denoising diffusion probabilistic models have been shown to generate more realistic imagery than prior methods, and have been successfully demonstrated in unconditional and class-conditional settings. We explo...
Preprint
Full-text available
Many open-world applications require the detection of novel objects, yet state-of-the-art object detection and instance segmentation networks do not excel at this task. The key issue lies in their assumption that regions without any annotations should be suppressed as negatives, which teaches the model to treat the unannotated objects as background...
Article
Humans learn to drive through both practice and theory, e.g. by studying the rules, while most self-driving systems are limited to the former. Being able to incorporate human knowledge of typical causal driving behaviour should benefit autonomous systems. We propose a new approach that learns vehicle control with the help of human advice. Specifica...
Article
We generate natural language explanations for a fine-grained visual recognition task. Our explanations fulfill two criteria. First, explanations are class discriminative, meaning they mention attributes in an image which are important to identify a class. Second, explanations are image relevant, meaning they reflect the actual content of an image....
Article
The goal of continual learning (CL) is to learn a sequence of tasks without suffering from the phenomenon of catastrophic forgetting. Previous work has shown that leveraging memory in the form of a replay buffer can reduce performance degradation on prior tasks. We hypothesize that forgetting can be further reduced when the model is encouraged to r...
Article
In order to interact with a robot or make wise decisions about where and how to deploy it in the real world, humans need to have an accurate mental model of how the robot acts in different situations. We propose to improve users’ mental model of a robot by showing them examples of how the robot behaves in informative scenarios. We explore this in t...
Preprint
The predominant approach for language modeling is to process sequences from left to right, but this eliminates a source of information: the order by which the sequence was generated. One strategy to recover this information is to decode both the content and ordering of tokens. Existing approaches supervise content and ordering by designing problem-...
Preprint
Full-text available
Evidence from cognitive psychology suggests that understanding spatio-temporal object interactions and dynamics can be essential for recognizing actions in complex videos. Therefore, action recognition models are expected to benefit from explicit modeling of objects, including their appearance, interaction, and dynamics. Recently, video transformer...
Article
Full-text available
In complex inferential tasks like question answering, machine learning models must confront two challenges: the need to implement a compositional reasoning process, and, in many applications, the need for this reasoning process to be interpretable to assist users in both development and prediction. Existing models designed to produce interpretable...
Preprint
Full-text available
Domain adaptation seeks to mitigate the shift between training on the \emph{source} domain and testing on the \emph{target} domain. Most adaptation methods rely on the source data by joint optimization over source data and target data. Source-free methods replace the source data with a source model by fine-tuning it on target. Either way, the major...
Preprint
Unsupervised domain adaptation (UDA) methods can dramatically improve generalization on unlabeled target domains. However, optimal hyper-parameter selection is critical to achieving high accuracy and avoiding negative transfer. Supervised hyper-parameter validation is not possible without labeled target data, which raises the question: How can we v...
Preprint
Full-text available
Active learning for object detection is conventionally achieved by applying techniques developed for classification in a way that aggregates individual detections into image-level selection criteria. This is typically coupled with the costly assumption that every image selected for labelling must be exhaustively annotated. This yields incremental i...
Preprint
Full-text available
Recent work has shown that the performance of machine learning models can vary substantially when models are evaluated on data drawn from a distribution that is close to but different from the training distribution. As a result, predicting model performance on unseen distributions is an important challenge. Our work connects techniques from domain...
Preprint
Full-text available
A generic video summary is an abridged version of a video that conveys the whole story and features the most important scenes. Yet the importance of scenes in a video is often subjective, and users should have the option of customizing the summary by using natural language to specify what is important to them. Further, existing models for fully aut...
Preprint
Vision transformer (ViT) models exhibit substandard optimizability. In particular, they are sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and training schedule length. In comparison, modern convolutional neural networks are far easier to optimize. Why is this the case? In this work, we conjecture that the issue li...
Preprint
Full-text available
Unsupervised pretraining has recently proven beneficial for computer vision tasks, including object detection. However, previous self-supervised approaches are not designed to handle a key aspect of detection: localizing objects. Here, we present DETReg, an unsupervised pretraining approach for object DEtection with TRansformers using Region priors...
Preprint
The virtuoso plays the piano with passion, poetry and extraordinary technical ability. As Liszt said (a virtuoso)must call up scent and blossom, and breathe the breath of life. The strongest robots that can play a piano are based on a combination of specialized robot hands/piano and hardcoded planning algorithms. In contrast to that, in this paper,...
Preprint
With the increased availability of rich tactile sensors, there is an equally proportional need for open-source and integrated software capable of efficiently and effectively processing raw touch measurements into high-level signals that can be used for control and decision-making. In this paper, we present PyTouch -- the first machine learning libr...
Preprint
Adversarial attacks optimize against models to defeat defenses. Existing defenses are static, and stay the same once trained, even while attacks change. We argue that models should fight back, and optimize their defenses against attacks at test time. We propose dynamic defenses, to adapt the model and input during testing, by defensive entropy mini...
Preprint
Full-text available
Building reliable object detectors that are robust to domain shifts, such as various changes in context, viewpoint, and object appearances, is critical for real-world applications. In this work, we study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors. Inspired by the princi...
Preprint
Policies trained in simulation often fail when transferred to the real world due to the `reality gap' where the simulator is unable to accurately capture the dynamics and visual properties of the real world. Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering to determine how much to rand...
Preprint
The threat of online misinformation is hard to overestimate, with adversaries relying on a range of tools, from cheap fakes to sophisticated deep fakes. We are motivated by a threat scenario where an image is being used out of context to support a certain narrative expressed in a caption. While some prior datasets for detecting image-text inconsist...
Preprint
Full-text available
We introduce a non-parametric approach for infinite video texture synthesis using a representation learned via contrastive learning. We take inspiration from Video Textures, which showed that plausible new videos could be generated from a single one by stitching its frames together in a novel yet consistent order. This classic work, however, was co...
Preprint
Anytime inference requires a model to make a progression of predictions which might be halted at any time. Prior research on anytime visual recognition has mostly focused on image classification. We propose the first unified and end-to-end model approach for anytime pixel-level recognition. A cascade of "exits" is attached to the model to make mult...
Preprint
Full-text available
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-superv...
Preprint
We present Region Similarity Representation Learning (ReSim), a new approach to self-supervised representation learning for localization-based tasks such as object detection and segmentation. While existing work has largely focused on solely learning global representations for an entire image, ReSim learns both regional representations for localiza...
Preprint
Full-text available
While self-supervised pretraining has proven beneficial for many computer vision tasks, it requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation. Prior work demonstrates that models pretrained on datasets dissimilar to their target data, such as chest X-ray models trained on ImageNet, underperform...
Preprint
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving. We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence...
Preprint
Full-text available
Image Mixtures for Unsupervised Visual Representation Learning.
Preprint
In this work, we aim to achieve efficient end-to-end learning of driving policies in dynamic multi-agent environments. Predicting and anticipating future events at the object level are critical for making informed driving decisions. We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well a...