Tong Zhang's research while affiliated with Applied Communication Sciences and other places

Publications (389)

Preprint
Full-text available
In this paper, we present ExtremeBERT, a toolkit for accelerating and customizing BERT pretraining. Our goal is to provide an easy-to-use BERT pretraining toolkit for the research community and industry. Thus, the pretraining of popular language models on customized datasets is affordable with limited resources. Experiments show that, to achieve th...
Article
Full-text available
In order to improve the computational accuracy of the AOA (angle of arrival) location, an AOA location method based on CTLS (constrained total least squares) and incorporating the effect of station errors is investigated. Its approximate closed-form solution is derived by first calculating the least squares solution, then substituting the least squ...
Preprint
Particle-based variational inference (VI) minimizes the KL divergence between model samples and the target posterior with gradient flow estimates. With the popularity of Stein variational gradient descent (SVGD), the focus of particle-based VI algorithms has been on the properties of functions in Reproducing Kernel Hilbert Space (RKHS) to approxima...
Article
Full-text available
Saliency prediction has made great strides over the past two decades, with current techniques modeling low-level information, such as color, intensity and size contrasts, and high-level ones, such as attention and gaze direction for entire objects. Despite this, these methods fail to account for the dissimilarity between objects, which affects huma...
Preprint
Full-text available
Current Dynamic Texture Synthesis (DyTS) models in the literature can synthesize realistic videos. However, these methods require a slow iterative optimization process to synthesize a single fixed-size short video, and they do not offer any post-training control over the synthesis process. We propose Dynamic Neural Cellular Automata (DyNCA), a fram...
Preprint
Normalizing flow (NF) has gained popularity over traditional maximum likelihood based methods due to its strong capability to model complex data distributions. However, the standard approach, which maps the observed data to a normal distribution, has difficulty in handling data distributions with multiple relatively isolated modes. To overcome this...
Chapter
The success of monocular 3D object detection highly relies on considerable labeled data, which is costly to obtain. To alleviate the annotation effort, we propose MVC-MonoDet, the first semi-supervised training framework that improves Monocular 3D object detection by enforcing multi-view consistency. In particular, a box-level regularization and an...
Preprint
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making, which includes Markov decision process (MDP), partially observable Markov decision process (POMDP), and predictive state representation (PSR) as special cases. Toward finding the minimum assumption that empowers sample efficient learnin...
Article
Full-text available
Autonomous exploration of autonomous mobile robots in unknown environments is a hot topic at present. Object detection is an important research direction in improving the autonomous capability of autonomous mobile robots in unknown environments. In object detection, doors and windows have many similar features and are difficult to distinguish. Ther...
Chapter
Finding accurate correspondences among different views is the Achilles’ heel of unsupervised Multi-View Stereo (MVS). Existing methods are built upon the assumption that corresponding pixels share similar photometric features. However, multi-view images in real scenarios observe non-Lambertian surfaces and experience occlusions. In this work, we pr...
Preprint
Commonsense reasoning tasks such as commonsense knowledge graph completion and commonsense question answering require powerful representation learning. In this paper, we propose to learn commonsense knowledge representation by MICO, a Multi-alternative contrastve learning framework on COmmonsense knowledge graphs (MICO). MICO generates the commonse...
Preprint
As a key natural language processing (NLP) task, word sense disambiguation (WSD) evaluates how well NLP models can understand the lexical semantics of words under specific contexts. Benefited from the large-scale annotation, current WSD systems have achieved impressive performances in English by combining supervised learning with lexical knowledge....
Preprint
Existing studies on provably efficient algorithms for Markov games (MGs) almost exclusively build on the "optimism in the face of uncertainty" (OFU) principle. This work focuses on a different approach of posterior sampling, which is celebrated in many bandits and reinforcement learning settings but remains under-explored for MGs. Specifically, for...
Preprint
Generative Adversarial Networks (GANs) have achieved great success in data generation. However, its statistical properties are not fully understood. In this paper, we consider the statistical behavior of the general $f$-divergence formulation of GAN, which includes the Kullback--Leibler divergence that is closely related to the maximum likelihood p...
Article
Full-text available
The analysis of over-parameterized neural networks has drawn significant attention in recent years. It was shown that such systems behave like convex systems under various restricted settings, such as for two-layer neural networks, and when learning is only restricted locally in the so-called neural tangent kernel space around specialized initializ...
Article
Autonomous exploration is grounded on target decision and trajectory planning, which is widely deployed on unmanned aerial vehicles. However, existing methods generally only focus on the exploration effect of target decision but neglect the environment information gained with trajectory planning during flight, resulting in redundant exploration tra...
Preprint
Full-text available
Most prior convergence results on differentially private stochastic gradient descent (DP-SGD) are derived under the simplistic assumption of uniform Lipschitzness, i.e., the per-sample gradients are uniformly bounded. This assumption is unrealistic in many problems, e.g., linear regression with Gaussian data. We relax uniform Lipschitzness by inste...
Preprint
Full-text available
Existing theory predicts that data heterogeneity will degrade the performance of the Federated Averaging (FedAvg) algorithm in federated learning. However, in practice, the simple FedAvg algorithm converges very well. This paper explains the seemingly unreasonable effectiveness of FedAvg that contradicts the previous theoretical predictions. We fin...
Preprint
Overparameterized neural networks enjoy great representation power on complex data, and more importantly yield sufficiently smooth output, which is crucial to their generalization and robustness. Most existing function approximation theories suggest that with sufficiently many parameters, neural networks can well approximate certain classes of func...
Preprint
Full-text available
Offline reinforcement learning (RL) aims at learning an optimal strategy using a pre-collected dataset without further interactions with the environment. While various algorithms have been proposed for offline RL in the previous literature, the minimax optimal performance has only been (nearly) achieved for tabular Markov decision processes (MDPs)....
Preprint
Full-text available
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks, including depth estimation, semantic segmentation, reshading, surface normal estimation, 2D keypoint detection, and edge detection. Based on the Swin transformer model, our framework encodes the input image into a...
Preprint
We study the linear contextual bandit problem in the presence of adversarial corruption, where the reward at each round is corrupted by an adversary, and the corruption level (i.e., the sum of corruption magnitudes over the horizon) is $C\geq 0$. The best-known algorithms in this setting are limited in that they either are computationally inefficie...
Preprint
Full-text available
Directly regressing the non-rigid shape and camera pose from the individual 2D frame is ill-suited to the Non-Rigid Structure-from-Motion (NRSfM) problem. This frame-by-frame 3D reconstruction pipeline overlooks the inherent spatial-temporal nature of NRSfM, i.e., reconstructing the whole 3D sequence from the input 2D sequence. In this paper, we pr...
Preprint
Self-supervised learning (SSL) methods aim to learn view-invariant representations by maximizing the similarity between the features extracted from different crops of the same image regardless of cropping size and content. In essence, this strategy ignores the fact that two crops may truly contain different image information, e.g., background and s...
Preprint
Finding accurate correspondences among different views is the Achilles' heel of unsupervised Multi-View Stereo (MVS). Existing methods are built upon the assumption that corresponding pixels share similar photometric features. However, multi-view images in real scenarios observe non-Lambertian surfaces and experience occlusions. In this work, we pr...
Preprint
We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional s...
Preprint
Domain-specific fine-tuning strategies for large pre-trained models received vast attention in recent years. In previously studied settings, the model architectures and parameters are tunable or at least visible, which we refer to as white-box settings. This work considers a new scenario, where we do not have access to a pre-trained model, except f...
Preprint
We enhance the accuracy and generalization of univariate time series point prediction by an explainable ensemble on the fly. We propose an Interpretable Dynamic Ensemble Architecture (IDEA), in which interpretable base learners give predictions independently with sparse communication as a group. The model is composed of several sequentially stacked...
Article
Full-text available
In view of traditional point-line feature visual inertial simultaneous localization and mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in real time under the condition of weak indoor texture and light and shade change, this paper proposes an inertial SLAM method based on point-line vision for indoor wea...
Preprint
Adversarial training is a popular method to robustify models against adversarial attacks. However, it exhibits much more severe overfitting than training on clean inputs. In this work, we investigate this phenomenon from the perspective of training instances, i.e., training input-target pairs. Based on a quantitative metric measuring instances' dif...
Preprint
Full-text available
Generative Adversarial Network (GAN) based localized image editing can suffer ambiguity between semantic attributes. We thus present a novel objective function to evaluate the locality of an image edit. By introducing the supervision from a pre-trained segmentation network and optimizing the objective function, our framework, called Locally Effecti...
Preprint
Full-text available
Sparse training is a natural idea to accelerate the training speed of deep neural networks and save the memory usage, especially since large modern neural networks are significantly over-parameterized. However, most of the existing methods cannot achieve this goal in practice because the chain rule based gradient (w.r.t. structure parameters) estim...
Preprint
Full-text available
Covariate shift generalization, a typical case in out-of-distribution (OOD) generalization, requires a good performance on the unknown testing distribution, which varies from the accessible training distribution in the form of covariate shift. Recently, stable learning algorithms have shown empirical effectiveness to deal with covariate shift gener...
Preprint
Full-text available
Learning rate schedulers have been widely adopted in training deep neural networks. Despite their practical importance, there is a discrepancy between its practice and its theoretical analysis. For instance, it is not known what schedules of SGD achieve best convergence, even for simple problems such as optimizing quadratic objectives. So far, step...
Article
In this paper, we propose a novel semi-supervised active salient object detection (SOD) method that actively acquires a small subset of the most discriminative and representative samples for labeling. Two main contributions have been made to prevent the method from being overwhelmed by labeling similar distributed samples. First, we design a salien...
Preprint
The communication of gradients is a key bottleneck in distributed training of large scale machine learning models. In order to reduce the communication cost, gradient compression (e.g., sparsification and quantization) and error compensation techniques are often used. In this paper, we propose and study three new efficient methods in this space: er...
Preprint
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning. The core concept of GNNs is to find a representation by recursively aggregating the representations of a central node and those of its neighbors. The core concept of GNNs is to...
Preprint
Full-text available
In this paper, we investigate the knowledge distillation (KD) strategy for object detection and propose an effective framework applicable to both homogeneous and heterogeneous student-teacher pairs. The conventional feature imitation paradigm introduces imitation masks to focus on informative foreground areas while excluding the background noises....
Preprint
Full-text available
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compat...
Article
The article studies the fault diagnosis of the first-stage power system of a carrier rocket made up of multiple engines. It establishes the simplified 6-DOF nonlinear model and uses the extended Kalman filter to generate residual errors. The quadratic receding time-domain algorithm is used to detect faults, and estimation vector fault characteristi...
Preprint
Full-text available
This paper considers stochastic first-order algorithms for convex-concave minimax problems of the form $\min_{\bf x}\max_{\bf y}f(\bf x, \bf y)$, where $f$ can be presented by the average of $n$ individual components which are $L$-average smooth. For $\mu_x$-strongly-convex-$\mu_y$-strongly-concave setting, we propose a new method which could find...
Preprint
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present...
Preprint
Full-text available
We propose Joint-DetNAS, a unified NAS framework for object detection, which integrates 3 key components: Neural Architecture Search, pruning, and Knowledge Distillation. Instead of naively pipelining these techniques, our Joint-DetNAS optimizes them jointly. The algorithm consists of two core processes: student morphism optimizes the student's arc...
Preprint
Full-text available
Recent breakthroughs of Neural Architecture Search (NAS) extend the field's research scope towards a broader range of vision tasks and more diversified search spaces. While existing NAS methods mostly design architectures on a single task, algorithms that look beyond single-task search are surging to pursue a more efficient and universal solution a...
Preprint
Pre-trained text encoders have drawn sustaining attention in natural language processing (NLP) and shown their capability in obtaining promising results in different tasks. Recent studies illustrated that external self-supervised signals (or knowledge extracted by unsupervised learning, such as n-grams) are beneficial to provide useful semantic evi...
Preprint
Full-text available
Weight pruning is an effective technique to reduce the model size and inference time for deep neural networks in real-world deployments. However, since magnitudes and relative importance of weights are very different for different layers of a neural network, existing methods rely on either manual tuning or handcrafted heuristic rules to find approp...
Preprint
Full-text available
This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems. A key challenge is that the depth recovery problem is ill-posed in monocular data. In this work, we first conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur. In...
Preprint
Few-shot learning aims to correctly recognize query samples from unseen classes given a limited number of support samples, often by relying on global embeddings of images. In this paper, we propose to equip the backbone network with an attention agent, which is trained by reinforcement learning. The policy gradient algorithm is employed to train th...
Preprint
Full-text available
Saliency prediction has made great strides over the past two decades, with current techniques modeling low-level information, such as color, intensity and size contrasts, and high-level one, such as attention and gaze direction for entire objects. Despite this, these methods fail to account for the dissimilarity between objects, which humans natura...
Preprint
Full-text available
Visual salient object detection (SOD) aims at finding the salient object(s) that attract human attention, while camouflaged object detection (COD) on the contrary intends to discover the camouflaged object(s) that hidden in the surrounding. In this paper, we propose a paradigm of leveraging the contradictory information to enhance the detection abi...
Preprint
We present a new method for few-shot human motion transfer that achieves realistic human image generation with only a small number of appearance inputs. Despite recent advances in single person motion transfer, prior methods often require a large number of training images and take long training time. One promising direction is to perform few-shot h...
Article
In this paper, a novel stochastic extra-step quasi-Newton method is developed to solve a class of nonsmooth nonconvex composite optimization problems. We assume that the gradient of the smooth part of the objective function can only be approximated by stochastic oracles. The proposed method combines general stochastic higher order steps derived fro...
Preprint
Full-text available
Convolution has been the core ingredient of modern neural networks, triggering the surge of deep learning in vision. In this work, we rethink the inherent principles of standard convolution for vision tasks, specifically spatial-agnostic and channel-specific. Instead, we present a novel atomic operation for deep neural networks by inverting the afo...
Preprint
Full-text available
Due to the rapid growth of smart agents such as weakly connected computational nodes and sensors, developing decentralized algorithms that can perform computations on local agents becomes a major research direction. This paper considers the problem of decentralized Principal components analysis (PCA), which is a statistical method widely used for d...
Article
Full-text available
Deep learning has received considerable empirical success in recent years. However, while many ad hoc tricks have been discovered by practitioners, until recently, there has been a lack of theoretical understanding for tricks invented in the deep learning literature. Known by practitioners that overparameterized neural networks (NNs) are easy to le...
Article
Despite the increasing interest in multi-agent reinforcement learning (MARL) in multiple communities, understanding its theoretical foundation has long been recognized as a challenging problem. In this paper, we address this problem by providing a finite-sample analysis for decentralized batch MARL. Specifically, we consider a type of mixed MARL se...