February 2025
·
13 Reads
When executed well, project-based learning (PBL) engages students' intrinsic motivation, encourages students to learn far beyond a course's limited curriculum, and prepares students to think critically and maturely about the skills and tools at their disposal. However, educators experience mixed results when using PBL in their classrooms: some students thrive with minimal guidance and others flounder. Early evaluation of project proposals could help educators determine which students need more support, yet evaluating project proposals and student aptitude is time-consuming and difficult to scale. In this work, we design, implement, and conduct an initial user study (n = 36) for a software system that collects project proposals and aptitude information to support educators in determining whether a student is ready to engage with PBL. We find that (1) users perceived the system as helpful for writing project proposals and identifying tools and technologies to learn more about, (2) educator ratings indicate that users with less technical experience in the project topic tend to write lower-quality project proposals, and (3) GPT-4o's ratings show agreement with educator ratings. While the prospect of using LLMs to rate the quality of students' project proposals is promising, its long-term effectiveness strongly hinges on future efforts at characterizing indicators that reliably predict students' success and motivation to learn.