# Thomas A. Henzinger's research while affiliated with Institute of Science and Technology Austria (ISTA) and other places

**What is this page?**

This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

## Publications (595)

We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified...

We propose an algorithmic approach for synthesizing linear hybrid automata from time-series data. Unlike existing approaches, our approach provides a whole family of models with the same discrete structure but different dynamics. Each model in the family is guaranteed to capture the input data up to a precision error ε, in the following sense: For...

We consider the problem of learning control policies in stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability $1$. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods...

We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite...

There is an ever-growing zoo of modern neural network models that can efficiently learn end-to-end control from visual observations. These advanced deep models, ranging from convolutional to patch-based networks, have been extensively tested on offline image classification and regression tasks. In this paper, we study these vision architectures wit...

Quantitative monitoring can be universal and approximate: For every finite sequence of observations, the specification provides a value and the monitor outputs a best-effort approximation of it. The quality of the approximation may depend on the resources that are available to the monitor. By taking to the limit the sequences of specification value...

We propose an algorithmic approach for synthesizing linear hybrid automata from time-series data. Unlike existing approaches, our approach provides a whole family of models. Each model in the family is guaranteed to capture the input data up to a precision error {\epsilon}, in the following sense: For each time series, the model contains an executi...

We introduce a new statistical verification algorithm that formally quantifies the behavioral robustness of any time-continuous process formulated as a continuous-depth model. Our algorithm solves a set of global optimization (Go) problems over a given time horizon to construct a tight enclosure (Tube) of the set of all process executions starting...

We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic e...

Residual mappings have been shown to perform representation learning in the first layers and iterative feature refinement in higher layers. This interplay, combined with their stabilizing effect on the gradient norms, enables them to train very deep networks. In this paper, we take a step further and introduce entangled residual mappings to general...

In this work, we address the problem of learning provably stable neural network policies for stochastic control systems. While recent work has demonstrated the feasibility of certifying given policies using martingale theory, the problem of how to learn such policies is little explored. Here, we study the effectiveness of jointly learning a policy...

Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown tha...

Contract-based design is a promising methodology for taming the complexity of developing sophisticated systems. A formal contract distinguishes between assumptions , which are constraints that the designer of a component puts on the environments in which the component can be used safely, and guarantees , which are promises that the designer asks fr...

We study the problem of specifying sequential information-flow properties of systems. Information-flow properties are hyperproperties, as they compare different traces of a system. Sequential information-flow properties can express changes, over time, in the information-flow constraints. For example, information-flow constraints during an initializ...

We present a formal framework for the online black-box monitoring of software using monitors with quantitative verdict functions. Quantitative verdict functions have several advantages. First, quantitative monitors can be approximate, i.e., the value of the verdict function does not need to correspond exactly to the value of the property under obse...

We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic e...

Bayesian neural networks (BNNs) place distributions over the weights of a neural network to model uncertainty in the data and the network's prediction. We consider the problem of verifying safety when running a Bayesian neural network policy in a feedback loop with infinite time horizon systems. Compared to the existing sampling-based approaches, w...

We argue that the time is ripe to investigate differential monitoring, in which the specification of a program’s behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspec...

Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the...

We introduce a new stochastic verification algorithm that formally quantifies the behavioral robustness of any time-continuous process formulated as a continuous-depth model. The algorithm solves a set of global optimization (Go) problems over a given time horizon to construct a tight enclosure (Tube) of the set of all process executions starting f...

Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, sinc...

In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of att...

Formal verification of neural networks is an active topic of research, and recent advances have significantly increased the size of the networks that verification tools can handle. However, most methods are designed for verification of an idealized model of the actual network which works over real arithmetic and ignores rounding imprecisions. This...

Information-flow policies prescribe which information is available to a given user or subsystem. We study the problem of specifying such properties in reactive systems, which may require dynamic changes in information-flow restrictions between their states. We formalize several flavours of sequential information-flow, which cover different assumpti...

Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations, with the cost of nominal performance drop. While adversarial training appears to enhance the robustness and safety of a deep model deployed in open-world decision-critical applications, counterintuitively, it induces undesired...

A graph game proceeds as follows: two players move a token through a graph to produce a finite or infinite path, which determines the payoff of the game. We study bidding games in which in each turn, an auction determines which player moves the token. Bidding games were largely studied in combination with two variants of first-price auctions called...

Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the...

Formal verification of neural networks is an active topic of research, and recent advances have significantly increased the size of the networks that verification tools can handle. However, most methods are designed for verification of an idealized model of the actual network which works over real arithmetic and ignores rounding imprecisions. This...

We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its th...

A central goal of artificial intelligence in high-stakes decision-making applications is to design a single algorithm that simultaneously expresses generalizability by learning coherent representations of their world and interpretable explanations of its dynamics. Here, we combine brain-inspired neural computation principles and scalable deep learn...

Machine-learning techniques achieve excellent performance in modern applications. In particular, neural networks enable training classifiers, often used in safety-critical applications, to complete a variety of tasks without human supervision. Neural-network models have neither the means to identify what they do not know nor to interact with the hu...

A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with tra...

This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier.

Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the outpu...

Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused...

Contract-based design is a promising methodology for taming the complexity of developing sophisticated systems. A formal contract distinguishes between assumptions, which are constraints that the designer of a component puts on the environments in which the component can be used safely, and guarantees, which are promises that the designer asks from...

Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural ne...

The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, ho...

The expression of a gene is characterised by its transcription factors and the function processing them. If the transcription factors are not affected by gene products, the regulating function is often represented as a combinational logic circuit, where the outputs (product) are determined by current input values (transcription factors) only, and a...

In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete b...

Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between tra...

Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between tra...

We present two algorithmic approaches for synthesizing linear hybrid automata from experimental data. Unlike previous approaches, our algorithms work without a template and generate an automaton with nondeterministic guards and invariants, and with an arbitrary number and topology of modes. They thus construct a succinct model from the data and pro...

A controller is a device that interacts with a plant. At each time point, it reads the plant’s state and issues commands with the goal that the plant operates optimally. Constructing optimal controllers is a fundamental and challenging problem. Machine learning techniques have recently been successfully applied to train controllers, yet they have l...

In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dyn...

A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we...

In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. We study {\em bidding games} in which the players bid for the right to move the token. Several bidding rules were studied previously. In {\em Richman} bidding, in each round, the players simultaneou...

In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round,...

Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design p...

We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification i...

Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition grap...

Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate af...

We address the problem of analyzing the reachable set of a polynomial nonlinear continuous system by over-approximating the flowpipe of its dynamics. The common approach to tackle this problem is to perform a numerical integration over a given time horizon based on Taylor expansion and interval arithmetic. However, this method results to be very co...

The task of a monitor is to watch, at run-time, the execution of a reactive system, and signal the occurrence of a safety violation in the observed sequence of events. While finite-state monitors have been studied extensively, in practice, monitoring software also makes use of unbounded memory. We define a model of automata equipped with integer-va...

We address the problem of analysing the reachable set of a nonlinear continuous system by computing or approximating the flow pipe of its dynamics.
The most widely employed approach to tackle this problem is to perform a numerical integration over a given time horizon based on Taylor expansion and interval arithmetic.
However, this method results t...

Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in indus...

In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. Such games are central in formal verification since they model the interaction between a non-terminating system and its environment. We study {\em bidding games} in which the players bid for the rig...

Recently, contract-based design has been proposed as an “orthogonal” approach that complements system design methodologies proposed so far to cope with the complexity of system design. Contract-based design provides a rigorous scaffolding for verification, analysis, abstraction/refinement, and even synthesis. Several results have been obtained in t...

Internet-of-Things and machine learning promise a new era for healthcare. The emergence of transformative technologies, such as Implantable and Wearable Medical Devices (IWMDs), has enabled collection and analysis of physiological signals from anyone anywhere anytime. Machine learning allows us to unearth patterns in these signals and make healthca...

Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed...

The behaviour of gene regulatory networks (GRNs) is typically analysed using simulation-based statistical testing-like methods. In this paper, we demonstrate that we can replace this approach by a formal verification-like method that gives higher assurance and scalability. We focus on Wagner’s weighted GRN model with varying weights, which is used...

The edit distance between two words $w_1, w_2$ is the minimal number of word
operations (letter insertions, deletions, and substitutions) necessary to
transform $w_1$ to $w_2$. The edit distance generalizes to languages
$\mathcal{L}_1, \mathcal{L}_2$, where the edit distance from $\mathcal{L}_1$ to
$\mathcal{L}_2$ is the minimal number $k$ such tha...

Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract...

In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational c...

A Rapidly-exploring Random Tree (RRT) is an algorithm which can search a non-convex region of space by incrementally building a space-filling tree. The tree is constructed from random points drawn from system’s state space and is biased to grow towards large unexplored areas in the system. RRT can provide better coverage of a system’s possible beha...

Nested weighted automata (NWA) present a robust and convenient automata-theoretic formalism for quantitative specifications. Previous works have considered NWA that processed input words only in the forward direction. It is natural to allow the automata to process input words backwards as well, for example, to measure the maximal or average time be...

We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preem...

We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the s...

Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players a...