March 2025
·
7 Reads
Corrosion in steel girder ends, progressing from localized thinning of the web and the lower flange to severe perforation in severe cases, can significantly affect structural integrity. This study evaluates the effects of severe corrosion, including web–lower flange disconnection and transverse flange perforation combined with web damage, on the residual shear strength of steel girder end web panels through experimental and numerical methods. Results indicate that when only the web is affected, post-buckling strength starts to decline by corrosion damaging the plastic hinge on the tension flange, disrupting the tension field action. Conversely, in cases involving simultaneous web and lower flange damage, localized yielding at fracture points near the flange damage leads to the abrupt rotation of the tension field inclination angle, causing an earlier and more pronounced decline in post-buckling strength compared to web-only damage scenarios.