Taufiq Daryanto’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (3)


Conversate: Supporting Reflective Learning in Interview Practice Through Interactive Simulation and Dialogic Feedback
  • Article

January 2025

·

22 Reads

Proceedings of the ACM on Human-Computer Interaction

Taufiq Daryanto

·

Xiaohan Ding

·

Lance T. Wilhelm

·

[...]

·

Eugenia H. Rho

Job interviews play a critical role in shaping one's career, yet practicing interview skills can be challenging, especially without access to human coaches or peers for feedback. Recent advancements in large language models (LLMs) present an opportunity to enhance the interview practice experience. Yet, little research has explored the effectiveness and user perceptions of such systems or the benefits and challenges of using LLMs for interview practice. Furthermore, while prior work and recent commercial tools have demonstrated the potential of AI to assist with interview practice, they often deliver one-way feedback, where users only receive information about their performance. By contrast, dialogic feedback , a concept developed in learning sciences, is a two-way interaction feedback process that allows users to further engage with and learn from the provided feedback through interactive dialogue. This paper introduces Conversate, a web-based application that supports reflective learning in job interview practice by leveraging large language models (LLMs) for interactive interview simulations and dialogic feedback. To start the interview session, the user provides the title of a job position (e.g., entry-level software engineer) in the system. Then, our system will initialize the LLM agent to start the interview simulation by asking the user an opening interview question and following up with questions carefully adapted to subsequent user responses. After the interview session, our back-end LLM framework will then analyze the user's responses and highlight areas for improvement. Users can then annotate the transcript by selecting specific sections and writing self-reflections. Finally, the user can interact with the system for dialogic feedback, conversing with the LLM agent to learn from and iteratively refine their answers based on the agent's guidance. To evaluate Conversate, we conducted a user study with 19 participants to understand their perceptions of using LLM-supported interview simulation and dialogic feedback. Our findings show that participants valued the adaptive follow-up questions from LLMs, as they enhanced the realism of interview simulations and encouraged deeper thinking. Participants also appreciated the AI-assisted annotation, as it reduced their cognitive burden and mitigated excessive self-criticism in their own evaluation of their interview performance. Moreover, participants found the LLM-supported dialogic feedback to be beneficial, as it promoted personalized and continuous learning, reduced feelings of judgment, and allowed them to express disagreement.


Fig. 2. Step 1: Interview Simulation. The AI agent conducts an interactive interview simulation, asking initial questions (e.g., "Tell me about yourself?") and dynamically generating contextually relevant follow-up questions based on the user's responses using an LLM. Note: The pixelated area shows the participants who appeared on camera. It has been pixelated to comply with anonymization rules.
Fig. 6. Expressing Disagreement in Dialogic Feedback (P6)
Participant Demographics
Conversate: Supporting Reflective Learning in Interview Practice Through Interactive Simulation and Dialogic Feedback
  • Preprint
  • File available

October 2024

·

60 Reads

Job interviews play a critical role in shaping one's career, yet practicing interview skills can be challenging, especially without access to human coaches or peers for feedback. Recent advancements in large language models (LLMs) present an opportunity to enhance the interview practice experience. Yet, little research has explored the effectiveness and user perceptions of such systems or the benefits and challenges of using LLMs for interview practice. Furthermore, while prior work and recent commercial tools have demonstrated the potential of AI to assist with interview practice, they often deliver one-way feedback, where users only receive information about their performance. By contrast, dialogic feedback, a concept developed in learning sciences, is a two-way interaction feedback process that allows users to further engage with and learn from the provided feedback through interactive dialogue. This paper introduces Conversate, a web-based application that supports reflective learning in job interview practice by leveraging large language models (LLMs) for interactive interview simulations and dialogic feedback. To start the interview session, the user provides the title of a job position (e.g., entry-level software engineer) in the system. Then, our system will initialize the LLM agent to start the interview simulation by asking the user an opening interview question and following up with questions carefully adapted to subsequent user responses. After the interview session, our back-end LLM framework will then analyze the user's responses and highlight areas for improvement. Users can then annotate the transcript by selecting specific sections and writing self-reflections. Finally, the user can interact with the system for dialogic feedback, conversing with the LLM agent to learn from and iteratively refine their answers based on the agent's guidance.

Download

CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing

October 2024

·

47 Reads

Online hate speech has become increasingly prevalent on social media platforms, causing harm to individuals and society. While efforts have been made to combat this issue through content moderation, the potential of user-driven counterspeech as an alternative solution remains underexplored. Existing counterspeech methods often face challenges such as fear of retaliation and skill-related barriers. To address these challenges, we introduce CounterQuill, an AI-mediated system that assists users in composing effective and empathetic counterspeech. CounterQuill provides a three-step process: (1) a learning session to help users understand hate speech and counterspeech; (2) a brainstorming session that guides users in identifying key elements of hate speech and exploring counterspeech strategies; and (3) a co-writing session that enables users to draft and refine their counterspeech with CounterQuill. We conducted a within-subjects user study with 20 participants to evaluate CounterQuill in comparison to ChatGPT. Results show that CounterQuill's guidance and collaborative writing process provided users a stronger sense of ownership over their co-authored counterspeech. Users perceived CounterQuill as a writing partner and thus were more willing to post the co-written counterspeech online compared to the one written with ChatGPT.