May 2025
·
6 Reads
With the growing demand for wireless communication, the sixth-generation (6G) wireless network will be more complex. The digital twin channel (DTC) is envisioned as a promising enabler for 6G, as it can create an online replica of the physical channel characteristics in the digital world, thereby supporting precise and adaptive communication decisions for 6G. In this article, we systematically review and summarize the existing efforts in realizing the DTC, providing a comprehensive analysis of ray tracing (RT), artificial intelligence (AI), and large model approaches. Based on this analysis, we further explore the potential of integrating large models with RT methods. By leveraging the strong generalization, multi-task processing capabilities, and multi-modal fusion capabilities of large models while incorporating physical priors from RT as expert knowledge to guide their training, there is a strong possibility of fulfilling the fast online inference and precise mapping requirements of the DTC. Therefore, we propose a novel DeepRT-enabled DTC (DRT-DTC) framework, which combines physical laws with large models like DeepSeek, offering a new vision for realizing the DTC. Two case studies are presented to demonstrate the possibility of this approach, which validate the effectiveness of physical law-based AI methods and large models in generating the DTC.