Tanya Crum's research while affiliated with Benedictine University and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (6)
T-box transcription factors are important regulators of development in all animals, and altered expression of T-box factors has been identified in an increasing number of diseases and cancers. Despite these important roles, the mechanism of T-box factor activity is not well understood. We have previously shown that the C. elegans Tbx2 subfamily mem...
T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well understood. Here we examine whether SUMOylation affect...
T-box transcription factors are crucial developmental regulators, and they have not previously been associated with SUMOylation. In Caenorhabditis elegans, the Tbx2 subfamily member TBX-2 (T-box protein 2) is required for anterior pharyngeal muscle development. TBX-2 interacts with SUMOylation pathway enzymes, and loss of these enzymes phenocopies...
The C. elegans pharynx is produced from the embryonic blastomeres ABa and MS. Pharyngeal fate in the ABa lineage is specified by the combined activities of GLP-1/Notch-mediated signals and the TBX-37 and TBX-38 T-box transcription factors. Here, we show another T-box factor TBX-2 also functions in ABa-derived pharyngeal development. tbx-2 mutants a...
Citations
... TBX2 is associated with the non-atrioventricular myocardium in the atrioventricular and outflow canals during cardiac development. TBX2 was identified to be modified by SUMO1, and TBX2 SUMOylation plays an important role in cardiac development, especially non-atrioventricular myocardium in the atrioventricular and outflow canals [100]. Therefore, the SUMOylation of TBX2 plays an important role in cardiac development. ...
... The deletion of HLH6 in this species produces a phenotype similar to that observed in starvation conditions (slow growth rate and small size) 52 . The t-bx2 gene regulates the development of the pharyngeal muscles 53 , and t-bx20 plays a role in the development of the hindgut 54 . Chowdhuri et al. observed arrested development in tbx-2 mutant larvae of C. elegans associated with an affected pharynx that made ingestion impossible 53 . ...
... On Western blot, protein expression of R608W and R616Q variants (Fig. 4b, c) was distinctly greater than that of the wild-type TBX2 (P < 0.05), consistent with the mRNA expression of these two TBX2 variants; in contrast, protein expression of A192T and A562V variants (Fig. 4e, f) were notably lower than that of the wild-type TBX3 (P < 0.05), indicating that TBX3 variants might lead to protein degradation. Tbx3 is associated with SUMOylation (SUMO, small ubiquitin-related modifier) that may be a conserved mechanism controlling Tbx3 activity [21,22]. Therefore, we observed the effect of ubiquitin-proteasome degradation and found that the reduction of A192T variant protein expression was rescued after adding the protease inhibitor, suggesting that the A192T variant decreased TBX3 protein stability by ubiquitin-proteasome degradation (Fig. 4g). ...