June 2025
·
2 Reads
·
1 Citation
Molecular Therapy — Nucleic Acids
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
June 2025
·
2 Reads
·
1 Citation
Molecular Therapy — Nucleic Acids
April 2025
·
13 Reads
Epigenetics & Chromatin
HIV-1 can establish a lifelong infection by incorporating its proviral DNA into the host genome. Once integrated, the virus can either remain dormant or start active transcription, a process governed by the HIV Tat protein, host transcription factors and the chromatin landscape at the integration site. Histone-modifying enzymes and chromatin-remodeling enzymes play crucial roles in regulating this chromatin environment. Chromatin remodelers, a group of ATP-dependent proteins, collaborate with host proteins and histone-modifying enzymes to restructure nucleosomes, facilitating DNA repair, replication, and transcription. Recent studies have highlighted the importance of chromatin remodelers in HIV-1 latency, spurring research focused on developing small molecule modulators that can either reactivate the virus for eradication approaches or induce long-term latency to prevent future reactivation. Research efforts have primarily centered on the SWI/SNF family, though much remains to be uncovered regarding other chromatin remodeling families. This review delves into the general functions and roles of each chromatin remodeling family in the context of HIV and discusses recent advances in small molecule development targeting chromatin remodelers and the HIV Tat protein, aiming to improve therapeutic approaches against HIV.
March 2025
·
19 Reads
·
1 Citation
Molecular Therapy — Nucleic Acids
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3’s role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat’s basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3’s critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3’s functions in oncogenic and inflammatory pathways.
December 2024
·
2 Reads
Journal of Virus Eradication
December 2024
·
1 Read
Journal of Virus Eradication
December 2020
·
430 Reads
·
71 Citations
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
... The reason for the lack of correlation is likely due to the multiple mechanisms that operate in vivo the maintain HIV latency which are not fully replicated in vitro. Studies show cells carrying HIV-1 proviruses can be located in a broad range of tissue reservoirs vary widely in their susceptibility to LRAs [56,59]. Susceptibility to LRAs in vivo is likely to be influenced by the impact of genetic and epigenic factors and interaction with viral components; there are potentially multiple possible integration sites for the HIV provirus DNA which have be observed in vivo which are not recapitulated in vitro [56]. ...
December 2020