Sina Maren Coldewey’s research while affiliated with Universitätsklinikum Jena and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Figure 3. Kidney injury in Hmox1 lox/lox and Hmox1 R26∆/∆ mice with experimental hemolytic-uremic syndrome (HUS). (A) Neutrophil gelatinase-associated lipocalin (NGAL) (Hmox1 lox/lox sham: n = 11,
Reduction in Renal Heme Oxygenase-1 Is Associated with an Aggravation of Kidney Injury in Shiga Toxin-Induced Murine Hemolytic-Uremic Syndrome
  • Article
  • Full-text available

December 2024

·

25 Reads

Antonio N. Mestekemper

·

Wiebke Pirschel

·

Nadine Krieg

·

[...]

·

Sina M. Coldewey

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli, primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by Hmox1) in HUS has not yet been investigated. We hypothesized that HO-1, also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS. The effect of tamoxifen-induced Hmox1 gene deletion on renal HO-1 expression, disease progression and AKI was investigated in mice 7 days after HUS induction. Renal HO-1 levels were increased in Stx-challenged mice with tamoxifen-induced Hmox1 gene deletion (Hmox1R26Δ/Δ) and control mice (Hmox1lox/lox). This HO-1 induction was significantly lower (−43%) in Hmox1R26Δ/Δ mice compared to Hmox1lox/lox mice with HUS. Notably, the reduced renal HO-1 expression was associated with an exacerbation of kidney injury in mice with HUS as indicated by a 1.7-fold increase (p = 0.02) in plasma neutrophil gelatinase-associated lipocalin (NGAL) and a 1.3-fold increase (p = 0.06) in plasma urea, while other surrogate parameters for AKI (e.g., periodic acid Schiff staining, kidney injury molecule-1, fibrin deposition) and general disease progression (HUS score, weight loss) remained unchanged. These results indicate a potentially protective role of HO-1 in the pathogenesis of Stx-mediated AKI in HUS.

Download

Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure

November 2024

·

28 Reads

Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.