April 2025
·
4 Reads
Ice encasement is a major concern for turfgrass managers in cold climates; however, there is a lack of data about both which turfgrasses are best suited for survival under these conditions and the reasons behind the superior recovery of some grasses from long‐term ice encasement. In this study, we encased golf course putting greens‐height field plots of creeping bentgrass (Agrostis stolonifera L.), velvet bentgrass (Agrostis canina L.), annual bluegrass (Poa annua L. var. reptans Hausskn.), Chewings fescue (Festuca. rubra L. ssp. commutata Gaudin), and slender creeping red fescue (F. rubra L. ssp. littoralis (G. Mey.) Auquier) with ice for 90–120 days with the inclusion of CO2, O2, and temperature sensors at 2.5 and 12.5 cm depth to better understand environmental conditions under ice and factors related to winterkill. Velvet bentgrass had the best overall performance and recovery, while annual bluegrass did not survive. Differences in recovery among turfgrass taxa may have been affected by the length of the ice encasement period, higher CO2 levels (>40,000 ppm), and lower O2 values, particularly in the second experimental run. During the recovery period in both years, photochemical efficiency values began increasing 5–10 days before percent green cover, suggesting that visual performance of the turf surface is a lagging indicator of recovery. Overall, recovery from ice encasement was annual bluegrass < Chewings fescue < creeping bentgrass = slender creeping red fescue = velvet bentgrass. These results can guide turfgrass managers in making species selection decisions in areas where long‐duration ice encasement is a risk.