March 2025
·
17 Reads
Typical SLAM systems adhere to the assumption of environment rigidity, which limits their functionality when deployed in the dynamic indoor environments commonly encountered by household robots. Prevailing methods address this issue by employing semantic information for the identification and processing of dynamic objects in scenes. However, extracting reliable semantic information remains challenging due to the presence of motion blur. In this paper, a novel visual SLAM algorithm is proposed in which various approaches are integrated to obtain more reliable semantic information, consequently reducing the impact of motion blur on visual SLAM systems. Specifically, to accurately distinguish moving objects and static objects, we introduce a missed segmentation compensation mechanism into our SLAM system for predicting and restoring semantic information, and depth and semantic information is then leveraged to generate masks of dynamic objects. Additionally, to refine keypoint filtering, a probability-based algorithm for dynamic feature detection and elimination is incorporated into our SLAM system. Evaluation experiments using the TUM and Bonn RGB-D datasets demonstrated that our SLAM system achieves lower absolute trajectory error (ATE) than existing systems in different dynamic indoor environments, particularly those with large view angle variations. Our system can be applied to enhance the autonomous navigation and scene understanding capabilities of domestic robots.