Shuling Li’s research while affiliated with Chongqing Normal University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Distribution of quadrature points for the RKGSI and 13-point Gauss rule in the unit triangle Ωξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{{ \xi }} $$\end{document}
Nodes and integration cells by regular and irregular discretizations in the domain Ω=0,12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =\left( {0,1} \right) ^2$$\end{document} and quadrature points for the RKGSI and 13-point Gauss rule. The circle and the dot represent nodes and quadrature points, respectively
Schematic diagram for the square-channel flow
Analytical solutions (left column), and EFG solutions without stabilization (middle column) and with stabilization (right column) of the velocity field u computed by using ε=10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-2}$$\end{document} (top row), ε=10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-4}$$\end{document} (middle row), and ε=10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-6}$$\end{document} (bottom row) for the square-channel flow
Analytical solutions (left column), and EFG solutions without stabilization (middle column) and with stabilization (right column) of the induced magnetic field b computed by using ε=10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-2}$$\end{document} (top row), ε=10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-4}$$\end{document} (middle row), and ε=10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =10^{-6}$$\end{document} (bottom row) for the square-channel flow

+8

Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers
  • Article
  • Publisher preview available

April 2024

·

18 Reads

·

2 Citations

Engineering with Computers

Xiaolin Li

·

Shuling Li

A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to 1016101610^{16}. Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number Ha in the present EFG method is 1≤Ha≤10161Ha10161\le Ha\le 10^{16}, which is much larger than that in existing numerical methods.

View access options

Citations (1)


... In [15], a stabilized FEM with shock-capturing is tested for steady and unsteady MHD equations to handle the convection dominance as a result of the high Ha values. Li and Li [16] developed a stabilized element-free Galerkin method to solve time-independent MHD duct problems for Ha ∈ [1, 10 6 ]. Marusic-Paloka [17] obtained the asymptotic solutions of velocity and induced MF to analyze the impact of slip condition and perturbation of the boundary. ...

Reference:

A machine learning investigation on MHD duct flow
Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers

Engineering with Computers