Shalini Potham’s research while affiliated with University of Bridgeport and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


A Use of Matrix with GVT Computation in Optimistic Time Warp Algorithm for Parallel Simulation
  • Conference Paper
  • Full-text available

March 2012

·

180 Reads

Shalini Potham

·

·

·

Aasia Riasat

One of the most common optimistic synchronization protocols for parallel simulation is the Time Warp algorithm proposed by Jefferson [12]. Time Warp algorithm is based on the virtual time paradigm that has the potential for greater exploitation of parallelism and, perhaps more importantly, greater transparency of the synchronization mechanism to the simulation programmer. It is widely believe that the optimistic Time Warp algorithm suffers from large memory consumption due to frequent rollbacks. In order to achieve optimal memory management, Time Warp algorithm needs to periodically reclaim the memory. In order to determine which event-messages have been committed and which portion of memory can be reclaimed, the computation of global virtual time (GVT) is essential. Mattern [2] uses a distributed snapshot algorithm to approximate GVT which does not rely on first in first out (FIFO) channels. Specifically, it uses ring structure to establish cuts C1 and C2 to calculate the GVT for distinguishing between the safe and unsafe event-messages. Although, distributed snapshot algorithm provides a straightforward way for computing GVT, more efficient solutions for message acknowledging and delaying of sending event messages while awaiting control messages are desired. This paper studies the memory requirement and time complexity of GVT computation. The main objective of this paper is to implement the concept of matrix with the original Mattern's GVT algorithm to speedups the process of GVT computation while at the same time reduce the memory requirement. Our analysis shows that the use of matrix in GVT computation improves the overall performance in terms of memory saving and latency.

Download

Fig. 2. Handling green messages 
Fig 4: Cut C2 handling green messages for synchronization 
A GVT Based Algorithm for Butterfly Barrier in Parallel and Distributed Systems

December 2008

·

181 Reads

Mattern’s GVT algorithm is a time management algorithm that helps achieve the synchronization in parallel and distributed systems. This algorithm uses ring structure to establish cuts C1 and C2 to calculate the GVT. The latency of calculating the GVT is vital in parallel/distributed systems which is extremely high if calculated using this algorithm. However, using synchronous barriers with the Matterns algorithm can help improving the GVT computation process by minimizing the GVT latency. In this paper, we incorporate the butterfly barrier to employ two cuts C1 and C2 and obtain the resultant GVT at an affordable latency. Our analysis shows that the proposed GVT computation algorithm significantly improves the overall performance in terms of memory saving and latency.