Shagufta Jabeen’s research while affiliated with Islamia University of Bahawalpur and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


The cp. genome map of C. sabulosa. Genes outwards the map is demonstrated clockwise, while inside genes are transcribed anticlockwise. Color coding is used to differentiate between functional groups of genes. The intensity of the inner circle color indicates the amount of GC (Dark grey) and AT (Light grey). LSC denotes the large single copy, SSC denotes the small single copy, and IRb and IRa denote inverted repeats
Amino acids frequency (%) of C. sabulosa
RNA editing sites of C. sabulosa cp. genome
SSR analysis of C. sabulosa. (a) Types of SSRs. (b) Distribution of SSRs in active cp. genome regions. (c) Location of SSRs
Oligonucleotide repeats analysis in C. sabulosa

+9

The chloroplast genome of Chrozophora sabulosa Kar. & Kir. and its exploration in the evolutionary position uncertainty of genus Chrozophora
  • Article
  • Full-text available

June 2024

·

53 Reads

BMC Genomics

Nida Javaid

·

·

Shagufta Jabeen

·

[...]

·

Song Xiqiang

Chrozophora sabulosa Kar. & Kir. is a biennial herbaceous plant that belongs to the Euphorbiaceae family and has medicinal properties. This research aimed to identify the genetic characteristics and phylogenetic position of the Chrozophora genus within the Euphorbiaceae family. The evolutionary position of the Chrozophora genus was previously unknown due to insufficient research. Therefore, to determine the evolutionary link between C. sabulosa and other related species, we conducted a study using the NGS Illumina platform to sequence the C. sabulosa chloroplast (cp.) genome. The study results showed that the genome was 156,488 bp in length. It had a quadripartite structure consisting of two inverted repeats (IRb and IRa) of 24,649-bp, separated by an 87,696-bp LSC region and a 19,494-bp SSC region. The CP genome contained 113 unique genes, including four rRNA genes, 30 tRNA genes, and 79 CDS genes. In the second copy of the inverted repeat, there were 18 duplicated genes. The C. sabulosa lacks the petD, petB, rpl2, and rps16 intron. The analysis of simple sequence repeats (SSRs) revealed 93 SSR loci of 22 types and 78 oligonucleotide repeats of four kinds. The phylogenetic investigation showed that the Chrozophora genus evolved paraphyletically from other members of the Euphorbiaceae family. To support the phylogenetic findings, we selected species from the Euphorbiaceae and Phyllanthaceae families to compare with C. sabulosa for Ks and Ka substitution rates, InDels investigation, IR contraction and expansion, and SNPs analysis. The results of these comparative studies align with the phylogenetic findings. We identified six highly polymorphic regions shared by both families, which could be used as molecular identifiers for the Chrozophora genus (rpl33-rps18, rps18-rpl20, rps15-ycf1, ndhG-ndhI, psaI-ycf4, petA-psbJ). The cp. genome sequence of C. sabulosa reveals the evolution of plastid sequences in Chrozophora species. This is the first time the cp. genome of a Chrozophora genus has been sequenced, serving as a foundation for future sequencing of other species within the Chrozophoreae tribe and facilitating in-depth taxonomic research. The results of this research will also aid in identifying new Chrozophora species.

Download

Genomic exploration of Sesuvium sesuvioides: comparative study and phylogenetic analysis within the order Caryophyllales from Cholistan desert, Pakistan

December 2023

·

282 Reads

·

4 Citations

BMC Plant Biology

Background The Aizoaceae family’s Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. Results The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales’ 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. Conclusion The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family’s monophyletic origin. This study’s highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.

Citations (1)


... Since the last 20 years, with the availability of advanced sequencing tools, DNA barcoding has become a significant tool for identifying species and preventing the adulterations or admixtures in herbal drugs. Despite their medicinal importance, DNA barcoding of Sesuvium species has largely been unexplored, with the exception of the study by Javaid et al. (2023). Based on comparative plastome data of the family Aizoaceae, the study reported ten DNA signatures in total: rpl22, . ...

Reference:

Taxonomy, Geographical Distribution, and Evolutionary Dynamics of Sesuvium portulacastrum (L.) L.
Genomic exploration of Sesuvium sesuvioides: comparative study and phylogenetic analysis within the order Caryophyllales from Cholistan desert, Pakistan

BMC Plant Biology