Seungki Kim’s research while affiliated with University of Cincinnati and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (4)


Figure 1. Profile of a 1-round BKZ-84 reduced basis of the Mertens lattice for N = 120, ν = 130, ν y = 100, ν t = 15, and α * = α exp(−1.5 · 10 −6 γ 2 ).
Figure 2. Correlations between h StR (y) and partial sums for N = 120.
Figure 3. Correlations between ∥u − t∥ 2 and h StR (y) for N = 120, where u is the lattice point corresponding to y.
Best values of y for the function h P
Best values of y for the function h StR
On counterexamples to the Mertens conjecture
  • Preprint
  • File available

February 2025

Seungki Kim

·

Phong Q. Nguyen

We use state-of-art lattice algorithms to improve the upper bound on the lowest counterexample to the Mertens conjecture to exp(1.96×1019)\approx \exp(1.96 \times 10^{19}), which is significantly below the conjectured value of exp(5.15×1023)\approx \exp(5.15 \times 10^{23}) by Kotnik and van de Lune [KvdL04].

Download

Pruned Enumeration for BDD of unbalanced lattices (slight variant version of [5, 16])
Profile of a 1-round BKZ-84 reduced basis of the Mertens lattice for N=120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=120$$\end{document}, ν=130\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu = 130$$\end{document}, νy=100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _y = 100$$\end{document}, νt=15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _t = 15$$\end{document}, and α∗=αexp(-1.5·10-6γ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^* = \alpha \exp (-1.5 \cdot 10^{-6}\gamma ^2)$$\end{document}
Correlations between hStR(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{StR}(y)$$\end{document} and partial sums for N=120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=120$$\end{document}
Correlations between ‖u-t‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \textbf{u}-\textbf{t}\Vert ^2$$\end{document} and hStR(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{StR}(y)$$\end{document} for N=120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=120$$\end{document}, where u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{u}$$\end{document} is the lattice point corresponding to y
On counterexamples to the Mertens conjecture

Research in Number Theory

We use state-of-art lattice algorithms to improve the upper bound on the lowest counterexample to the Mertens conjecture to exp(1.96×1019)\approx \exp (1.96 \times 10^{19}), which is significantly below the conjectured value of exp(5.15×1023)\approx \exp (5.15 \times 10^{23}) by Kotnik and van de Lune (Exp Math 13:473–481, 2004).


Counting rational points of a Grassmannian

October 2022

·

7 Reads

·

2 Citations

Monatshefte für Mathematik

We prove an estimate on the number of rational points on the Grassmannian variety of bounded twisted height, refining the classical results of Schmidt (Duke Math J 35:327–339, 1968) and Thunder (Compos Math 88(2):155–186, 1993) over the rational field: most importantly, our formula counts all points. Among the consequences are a couple of new implications on the classical subject of counting rational points on flag varieties.


Citations (2)


... (ii) If one wants a formula that counts non-primitive sublattices as well, by a standard Möbius inversion argument (see [7], or Section 7.1 of [4]) one can show that we could simply replace all the a(n, d) by ...

Reference:

Mean value formulas on sublattices and flags of the random lattice
Counting rational points of a Grassmannian

Monatshefte für Mathematik

... for a bounded and compactly supported function f on R d . When we take f as the indicator function of a Borel set S ⊆ R d , the quantity f (gZ d ) stands for the number of nontrivial lattice points of gZ d contained in A, and this establishes a connection between the lattice-counting problems, geometry of numbers, and homogeneous dynamics [28,7,8,3,22,4,17,2,14], see also [13,15,11,21] for S-arithmetic and adelic settings, [9,16,18,12,20,19,6] for other Siegel transforms on various homogeneous spaces. Siegel's famous integral formula [29] says that the mean of f on X d with the measure µ d is equal to the integral of f with the usual Lebesgue measure on R d . ...

Mean value formulas on sublattices and flags of the random lattice
  • Citing Article
  • April 2022

Journal of Number Theory