S V Solodov’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (3)


Applying distributed ledger technologies in megacities to face anthropogenic burden challenges
  • Article
  • Full-text available

August 2022

·

42 Reads

·

5 Citations

IOP Conference Series Earth and Environmental Science

·

B I Savelyev

·

S V Solodov

·

S V Pronichkin

Distributed ledger technologies can support a rapid transition to smart cities and provide a high level of urban quality. Despite the large number of approaches to the problem of synthesizing smart city management systems, there is still no universal solution. One of the most promising areas is the construction of neural network control systems. The optimization module for a neurosimulator is developed that can operate in real time. The study of the neurosimulator on various data of anthropogenic load showed the possibility of obtaining high control accuracy.

Download

Framing regional innovation and technology policies for transformative change

February 2022

·

19 Reads

·

4 Citations

IOP Conference Series Earth and Environmental Science

The current state of social and economic development of regions requires new approaches to increasing the efficiency of their activities, and above all scientific approaches to forecasting, as one of the main components of the strategy of transformative changes. It is proposed to use an architecture based on neuro-fuzzy networks for forecasting regional development, which is characterized by a high learning rate due to the linear dependence of outputs on adjustable weights. Scientific and methodological approaches are developed to determine the global minimum of the learning criterion, taking into account the decision rules “if-then”.


Formalizing and securing relationships on multi-task metric learning for IoT-based smart cities

November 2021

·

22 Reads

·

2 Citations

Journal of Physics Conference Series

The use of modern information and communication technologies is an essential condition for the formation of the transport infrastructure of a smart city. Scientific and methodological approaches are developed to effectively monitor the transport infrastructure of a smart city based on multi-channel metric learning in the Internet of Things. The proposed solutions provide invariance to the type and nature of the movement of objects. The principles of technical implementation of the proposed method are substantiated using the characteristics of unmanned aerial vehicles of a smart city. Adaptive automatic switching of transport infrastructure monitoring channels is implemented in the form of a neural network analyzer software.

Citations (3)


... Искусственные нейронные сети широко распространены в разных отраслях: в обнаружение машин и предсказании их передвижения [1], в оценке поз в робототехнике [2], управлении умным городом [3], навигации [4] и распознавании текста [5]. ...

Reference:

Распознавание поз нескольких объектов на изображении с использованием real-time моделей
Applying distributed ledger technologies in megacities to face anthropogenic burden challenges

IOP Conference Series Earth and Environmental Science

... Также подобные системы детекции могут быть использованы как для поиска пропавших животных, и наблюдения за питомцами в пределах домашней территории. Такая технология может стать важной частью «умных городов» [9,10]. ...

Framing regional innovation and technology policies for transformative change

IOP Conference Series Earth and Environmental Science

... Современные технологии позволяют использовать алгоритмы компьютерного зрения для раннего обнаружения огня, что может существенно снизить ущерб от пожаров, обеспечивая быстрое и точное реагирование. В последние годы значительные усилия исследователей были направлены на разработку и улучшение алгоритмов машинного обучения [1,2], способных эффективно классифицировать изображения по наличию на них огня. Наиболее перспективными в этом направлении являются сверточные нейронные сети (CNN), которые показали выдающиеся результаты в задачах компьютерного зрения благодаря своей способности извлекать сложные признаки из изображений [3]. ...

Formalizing and securing relationships on multi-task metric learning for IoT-based smart cities

Journal of Physics Conference Series