Ronald Rosenfeld’s research while affiliated with Carnegie Mellon University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


A Maximum Entropy approach to adaptive statistical language modeling
  • Article

August 1996

·

101 Reads

·

799 Citations

Computer Speech & Language

Ronald Rosenfeld

An adaptive statistical language model is described, which successfully integrates long distance linguistic information with other knowledge sources. Most existing statistical language models exploit only the immediate history of a text. To extract information from further back in the document's history, we propose and usetrigger pairsas the basic information bearing elements. This allows the model to adapt its expectations to the topic of discourse. Next, statistical evidence from multiple sources must be combined. Traditionally, linear interpolation and its variants have been used, but these are shown here to be seriously deficient. Instead, we apply the principle of Maximum Entropy (ME). Each information source gives rise to a set of constraints, to be imposed on the combined estimate. The intersection of these constraints is the set of probability functions which are consistent with all the information sources. The function with the highest entropy within that set is the ME solution. Given consistent statistical evidence, a unique ME solution is guaranteed to exist, and an iterative algorithm exists which is guaranteed to converge to it. The ME framework is extremely general: any phenomenon that can be described in terms of statistics of the text can be readily incorporated. An adaptive language model based on the ME approach was trained on theWall Street Journalcorpus, and showed a 32–39% perplexity reduction over the baseline. When interfaced to SPHINX-II, Carnegie Mellon's speech recognizer, it reduced its error rate by 10–14%. This thus illustrates the feasibility of incorporating many diverse knowledge sources in a single, unified statistical framework.

Citations (1)


... We then construct the correlation between the context and content and solve for its solutions on the optimal parameters of the language model. Let us start with the standard maximum entropy language model with the form [48]: ...

Reference:

Contextual Augmented Multi-Model Programming (CAMP): A Hybrid Local-Cloud Copilot Framework
A Maximum Entropy approach to adaptive statistical language modeling
  • Citing Article
  • August 1996

Computer Speech & Language