Richard Easther's research while affiliated with Health New Zealand and other places

Publications (164)

Article
Full-text available
We quantify the differences between stellar accelerations in disk galaxies formed in a MONDian universe relative to galaxies with the identical baryonic matter distributions and a fitted cold dark matter halo. In a Milky Way-like galaxy the maximal transverse acceleration is 𝒪(10 ⁻⁹ ) arcseconds per year per decade, well beyond even the most optimi...
Article
Ultralight dark matter (ULDM) is an interesting alternative to the cold dark matter (CDM) paradigm. Due to the extremely low mass of the constituent particle (∼10−22 eV), ULDM can exhibit quantum effects up to kiloparsec scales. In particular, runaway collapse in the centres of ULDM halos is prevented by quantum pressure, providing a possible resol...
Article
Full-text available
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological app...
Preprint
We quantify the differences between stellar accelerations in disk galaxies formed in a MONDian universe relative to galaxies with the identical baryonic matter distributions and a fitted cold dark matter halo. In a Milky Way-like galaxy the maximal transverse acceleration is ${\cal {O}}(10^{-9})$ arcseconds per year per decade, well beyond even the...
Preprint
Full-text available
It was recently suggested that "cosmologically coupled" black holes with masses that increase in proportion to the volume of the Universe might constitute the physical basis of dark energy. We take this claim at face value and discuss its potential astrophysical implications. We show that the gravitational wave emission in binary systems would be s...
Preprint
Full-text available
Ultralight dark matter (ULDM) is an interesting alternative to the cold dark matter (CDM) paradigm. Due to the extremely low mass of the constituent particle ($\sim 10^{-22}$ eV), ULDM can exhibit quantum effects up to kiloparsec scales. In particular, runaway collapse in the centres of ULDM halos is prevented by quantum pressure, providing a possi...
Article
Ultralight dark matter (ULDM) is an axion-like dark matter candidate with an extremely small particle mass. ULDM halos consist of a spherically symmetric solitonic core and an NFW-like skirt. We simulate halo creation via soliton mergers and use these results to explore the core-halo mass relation. We calculate the eigenstates of the merged halos a...
Article
Ultralight dark matter (ULDM) is usually taken to be a single scalar field. Here we explore the possibility that ULDM consists of N light scalar fields with only gravitational interactions. This configuration is more consistent with the underlying particle physics motivations for these scenarios than a single ultralight field. ULDM halos have a cha...
Preprint
Full-text available
In this Working Paper we analyse computational strategies for using aggregated spatio-temporal population data acquired from telecommunications networks to infer travel and movement patterns between geographical regions. Specifically, we focus on hour-by-hour cellphone counts for the SA-2 geographical regions covering the whole of New Zealand. This...
Article
Following inflation, the Universe may pass through an early matter-dominated phase supported by the oscillating inflaton condensate. Initially small fluctuations in the condensate grow gravitationally on subhorizon scales and can collapse to form nonlinear “inflaton halos.” Their formation and subsequent tidal interactions will source gravitational...
Preprint
Ultralight dark matter (ULDM) is usually taken to be a single scalar field. Here we explore the possibility that ULDM consists of $N$ light scalar fields with only gravitational interactions. This configuration is more consistent with the underlying particle physics motivations for these scenarios than a single ultralight field. ULDM halos have a c...
Article
The ability to test and constrain theories of cosmic inflation will advance substantially over the next decade. Key data sources include cosmic microwave background (CMB) measurements and observations of the distribution of matter at low-redshift from optical, near-infrared, and 21cm intensity surveys. A positive detection of a CMB B-mode consisten...
Preprint
Full-text available
UltraLight Dark Matter (ULDM) is an axion-like dark matter candidate with an extremely small particle mass. ULDM halos consist of a spherically symmetric solitonic core and an NFW-like skirt. We simulate halo creation via soliton mergers and use these results to explore the core-halo mass relation. We calculate the eigenstates of the merged halos a...
Article
Full-text available
Random, multifield functions can set generic expectations for landscape-style cosmologies. We consider the inflationary implications of a landscape defined by a Gaussian random function, which is perhaps the simplest such scenario. Many key properties of this landscape, including the distribution of saddles as a function of height in the potential,...
Preprint
Full-text available
The ability to test and constrain theories of cosmic inflation will advance substantially over the next decade. Key data sources include cosmic microwave background (CMB) measurements and observations of the distribution of matter at low-redshift from optical, near-infrared, and 21cm intensity surveys. A positive detection of a CMB B-mode consisten...
Article
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Preprint
Following inflation, the Universe may pass through an early matter-dominated phase supported by the oscillating inflaton condensate. Initially small fluctuations in the condensate grow gravitationally on subhorizon scales and can collapse to form nonlinear ``inflaton halos''. Their formation and subsequent tidal interactions will source gravitation...
Article
Inflationary cosmology proposes that the early Universe undergoes accelerated expansion, driven, in simple scenarios, by a single scalar field or inflaton. The form of the inflaton potential determines the initial spectra of density perturbations and gravitational waves. We show that constraints on the duration of inflation together with the BICEP3...
Article
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Article
Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings from the very early universe through to present-day boson stars. Such quantum matter arises in a number of different theories, including the Peccei-Quinn axion and ultralight (ULDM) or fuzzy dark matter scenarios. We consider the dynamical evolution...
Preprint
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Preprint
Full-text available
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological app...
Article
We simulate the gravitational dynamics of a massive object interacting with ultralight/fuzzy dark matter (ULDM/FDM), nonrelativistic quantum matter described by the Schrödinger-Poisson equation. We first consider a point mass moving in a uniform background, and then a supermassive black hole (SMBH) moving within a ULDM soliton. After replicating si...
Article
The Universe may pass through an effectively matter-dominated epoch between inflation and big bang nucleosynthesis during which gravitationally bound structures can form on subhorizon scales. In particular, the inflaton field can collapse into inflaton halos, forming “large scale” structure in the very early universe. We combine N-body simulations...
Preprint
Inflationary cosmology proposes that the early Universe undergoes accelerated expansion, driven, in simple scenarios, by a single scalar field, or inflaton. The form of the inflaton potential determines the initial spectra of density perturbations and gravitational waves. We show that constraints on the duration of inflation together with the BICEP...
Preprint
The Universe may pass through an effectively matter-dominated epoch between inflation and Big Bang Nucleosynthesis during which gravitationally bound structures can form on subhorizon scales. In particular, the inflaton field can collapse into inflaton halos, forming "large scale" structure in the very early universe. We combine N-body simulations...
Preprint
We simulate the gravitational dynamics of a massive object interacting with Ultralight / Fuzzy Dark Matter (ULDM/FDM), non-relativistic quantum matter described by the Schrodinger-Poisson equation. We first consider a point mass moving in a uniform background, and then a supermassive black hole (SMBH) moving within a ULDM soliton. After replicating...
Preprint
Full-text available
Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings from the very early universe through to present-day boson stars. Such quantum matter arises in a number of different theories, including the Peccei-Quinn axion and UltraLight (ULDM) or Fuzzy (FDM) dark matter scenarios. We consider the dynamical evo...
Preprint
Random, multifield functions can set generic expectations for landscape-style cosmologies. We consider the inflationary implications of a landscape defined by a Gaussian random function, which is perhaps the simplest such scenario. Many key properties of this landscape, including the distribution of saddles as a function of height in the potential,...
Article
The early Universe may have passed through an extended period of matter-dominated expansion following inflation and prior to the onset of radiation domination. Subhorizon density perturbations grow gravitationally during such an epoch, collapsing into bound structures if it lasts long enough. The strong analogy between this phase and structure form...
Article
Full-text available
Landscape cosmology posits the existence of a convoluted, multidimensional, scalar potential—the “landscape”—with vast numbers of metastable minima. Random matrices and random functions in many dimensions provide toy models of the landscape, allowing the exploration of conceptual issues associated with these scenarios. We compute the relative numbe...
Preprint
The early Universe may have passed through an extended period of matter-dominated expansion following inflation and prior to the onset of radiation domination. Sub-horizon density perturbations grow gravitationally during such an epoch, collapsing into bound structures if it lasts long enough. The strong analogy between this phase and structure for...
Article
Full-text available
The distinctive effects of fuzzy dark matter are most visible at nonlinear galactic scales. We present the first simulations of mixed fuzzy and cold dark matter, obtained with an extended version of the nyx code. Fuzzy (or ultralight or axionlike) dark matter dynamics are governed by the comoving Schrödinger-Poisson equation. This is evolved with a...
Article
Full-text available
In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in par...
Preprint
Full-text available
The distinctive effects of fuzzy dark matter are most visible at non-linear galactic scales. We present the first simulations of mixed fuzzy and cold dark matter, obtained with an extended version of the Nyx code. Fuzzy (or ultralight, or axion-like) dark matter dynamics are governed by the comoving Schr\"odinger-Poisson equation. This is evolved w...
Article
Full-text available
In a broad class of scenarios, inflation is followed by an extended era of matter-dominated expansion during which the inflaton condensate is nonrelativistic on subhorizon scales. During this phase density perturbations grow to the point of nonlinearity and collapse into bound structures. This epoch strongly resembles structure formation with ultra...
Preprint
Scientific analyses often rely on slow, but accurate forward models for observable data conditioned on known model parameters. While various emulation schemes exist to approximate these slow calculations, these approaches are only safe if the approximations are well understood and controlled. This workshop submission reviews and updates a previousl...
Preprint
Landscape cosmology posits the existence of a convoluted, multidimensional, scalar potential -- the "landscape" -- with vast numbers of metastable minima. Random matrices and random functions in many dimensions provide toy models of the landscape, allowing the exploration of conceptual issues associated with these scenarios. We compute the relative...
Article
The core-cusp problem is a widely cited motivation for the exploration of dark matter models beyond standard cold dark matter. One such alternative is ultralight dark matter (ULDM), extremely light scalar particles exhibiting wavelike properties on kiloparsec scales. Astrophysically realistic ULDM halos are expected to consist of inner solitonic co...
Article
In simple inflationary cosmological scenarios, the near-exponential growth can be followed by a long period in which the Universe is dominated by the oscillating inflaton condensate. The condensate is initially almost homogeneous, but perturbations grow gravitationally, eventually fragmenting the condensate if it is not disrupted more quickly by re...
Preprint
Full-text available
We provide an updated assessment of the fundamental physics potential of LISA. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We org...
Preprint
In a broad class of scenarios, inflation is followed by an extended era of matter-dominated expansion during which the inflaton condensate is nonrelativistic on subhorizon scales. During this phase density perturbations grow to the point of nonlinearity and collapse into bound structures. This epoch strongly resembles structure formation with ultra...
Preprint
In simple inflationary cosmological scenarios the near-exponential growth can be followed by a long period in which the Universe is dominated by the oscillating inflaton condensate. The condensate is initially almost homogeneous, but perturbations grow gravitationally, eventually fragmenting the condensate if it is not disrupted more quickly by res...
Article
Typical stars in the Milky Way galaxy have velocities of hundreds of kilometres per second and experience gravitational accelerations of $\sim\!10^{-10}~{\rm m\,s}^{-2}$ , resulting in velocity changes of a few centimetres per second over a decade. Measurements of these accelerations would permit direct tests of the applicability of Newtonian dynam...
Preprint
The core-cusp problem is often cited as a motivation for the exploration of dark matter models beyond standard CDM [cold dark matter]. One such alternative is ULDM [ultra-light dark matter]; particles exhibiting wavelike properties on kiloparsec scales. ULDM dynamics are governed by the Schodinger-Poisson equations, which have solitonic ground stat...
Article
Full-text available
Tight constraints on the abundance of primordial black holes can be deduced across a vast range of masses, with the exception of those light enough to fully evaporate before nucleosynthesis. This hypothetical population is almost entirely unconstrained, to the point where the early Universe could pass through a matter-dominated phase with primordia...
Preprint
Full-text available
Direct measurement of acceleration is a key scientific goal for both cosmology and exoplanets. For cosmology, the concept of redshift drift (more than 60 years old by the 2020s) could directly establish the Friedmann-Lema{\^\i}tre-Robertson-Walker model. It would increase the dark energy figure of merit by a factor of 3 beyond Stage 4 experiments,...
Preprint
Tight constraints on the abundance of primordial black holes can be deduced across a vast range of masses, with the exception of those light enough to fully evaporate before nucleosynthesis. This hypothetical population is almost entirely unconstrained, to the point where the early Universe could pass through a matter-dominated phase with primordia...
Preprint
The next generation of instruments designed to measure the polarization of the cosmic microwave background (CMB) will provide a historic opportunity to open the gravitational wave window to the primordial Universe. Through high sensitivity searches for primordial gravitational waves, and tighter limits on the energy released in processes like phase...
Preprint
Typical stars in the Milky Way galaxy have velocities of hundreds of kilometres per second and experience gravitational accelerations of $\sim 10^{-10}$ m s$^{-2}$, resulting in velocity changes of a few centimetres per second over a decade. Measurements of these accelerations would permit direct tests of the applicability of Newtonian dynamics on...
Article
Full-text available
PYULTRALIGHT simulates the dynamics of ultralight dark matter in a non-expanding background. PYULTRALIGHT can describe the evolution of several interacting ultralight dark matter halos or one or more halos orbiting a central, fixed Newtonian potential, the latter scenario corresponding to dwarf galaxies orbiting a massive central galaxy. We verify...
Preprint
PyUltraLight simulates the dynamics of ultralight dark matter in a non-expanding background. PyUltraLight can describe the evolution of several interacting ultralight dark matter halos or one or more halos orbiting a central, fixed Newtonian potential, the latter scenario corresponding to dwarf galaxies orbiting a massive central galaxy. We verify...
Article
Full-text available
We describe the general inflationary dynamics that can arise with a single, canonically coupled field where the inflaton potential is a 4-th order polynomial. This scenario yields a wide range of combinations of the empirical spectral observables, $n_s$, $r$ and $\alpha_s$. However, not all combinations are possible and next-generation cosmological...
Article
Oscillons are spatially stationary, quasi-periodic solutions of nonlinear field theories seen in settings ranging from granular systems, low temperature condensates and early universe cosmology. We describe a new class of oscillon in which the spatial envelope can have "off centre" maxima and pulsate on timescales much longer than the fundamental f...
Article
It is speculated that the correct theory of fundamental physics includes a large landscape of states, which can be described as a potential which is a function of N scalar fields and some number of discrete variables. The properties of such a landscape are crucial in determining key cosmological parameters including the dark energy density, the sta...
Article
Full-text available
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of $\mathrm{H}_0$ and cluster abundances, indicate a signal...
Article
Full-text available
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to a...
Article
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to a...
Article
Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form, well before standard structure formation, if the small-scale perturbations have a large enough amplitude. Such mini...
Article
Full-text available
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for acc...
Article
A short inflationary phase may not erase all traces of the primordial universe. Associated observables include both spatial curvature and "anomalies" in the microwave background or large scale structure. The present curvature $\Omega_{K,0}$ reflects the initial curvature, $\Omega_{K,\mathrm{start}}$, and the angular size of anomalies depends on $k_...
Article
Full-text available
We present MultiModeCode, a Fortran 95/2000 package for the numerical exploration of multifield inflation models. This program facilitates efficient Monte Carlo sampling of prior probabilities for inflationary model parameters and initial conditions and is the first publicly available code that can efficiently generate large sample-sets for inflati...
Working Paper
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to a...
Article
Full-text available
We study the tensor spectral index $n_t$ and the tensor-to-scalar ratio $r$ in the simplest multifield extension to single-field, slow-roll inflation models. We show that multifield models with potentials $V \sim \sum_i \lambda_i |\phi_i|^p$ have different predictions for $n_t/r$ than single-field models, even when all the couplings are equal $\lam...
Article
Full-text available
An inflationary gravitational wave background consistent with BICEP2 is difficult to reconcile with a simple power-law spectrum of primordial scalar perturbations. Tensor modes contribute to the temperature anisotropies at multipoles with $l\lesssim 100$, and this effect --- together with a prior on the form of the scalar perturbations --- was the...
Article
Full-text available
Using the temperature data from Planck we search for departures from a power-law primordial power spectrum, employing Bayesian model-selection and posterior probabilities. We parametrize the spectrum with $n$ knots located at arbitrary values of $\log{k}$, with both linear and cubic splines. This formulation recovers both slow modulations and sharp...
Article
Full-text available
While cosmological inflation can erase primordial inhomogeneities, it is possible that inflation may not begin in a significantly inhomogeneous universe. This issue is particularly pressing in multifield scenarios, where even the homogeneous dynamics may depend sensitively on the initial configuration. This paper presents an initial survey of the o...
Article
Full-text available
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All sc...
Article
Full-text available
We use data from the nominal Planck mission to constrain modulations in the primordial power spectrum associated with monodromy inflation. The largest improvement in fit relative to the unmodulated model has \Delta\chi^2~10 and we find no evidence for a primordial signal, in contrast to a previous analysis of the WMAP9 dataset, for which \Delta\chi...
Article
Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals...
Article
Full-text available
We use cosmic microwave background (CMB) data from the 9-year WMAP release to derive constraints on monodromy inflation, which is characterized by a linear inflaton potential with a periodic modulation. We identify two possible periodic modulations that significantly improve the fit, but it is unclear whether this improvement is associated with a "...
Article
Full-text available
We investigate the initial conditions problem for multifield inflation. In these scenarios the pre-inflationary dynamics can be chaotic, increasing the sensitivity of the onset of inflation to the initial data even in the homogeneous limit. To analyze physically equivalent scenarios we compare initial conditions at fixed energy. This ensures that e...
Article
Full-text available
Within the Minimal Supersymmetric Standard Model (MSSM), LHC bounds suggest that scalar superpartner masses are far above the electroweak scale. Given a high superpartner mass, nonthermal dark matter is a viable alternative to WIMP dark matter generated via freezeout. In the presence of moduli fields nonthermal dark matter production is associated...
Article
Full-text available
Oscillons are long-lived, localized excitations of nonlinear scalar fields which may be copiously produced during preheating after inflation, leading to a possible oscillon-dominated phase in the early Universe. For example, this can happen after axion monodromy inflation, on which we run our simulations. We investigate the stochastic gravitational...
Article
Full-text available
We implement Slow Roll Reconstruction -- an optimal solution to the inverse problem for inflationary cosmology -- within ModeCode, a publicly available solver for the inflationary dynamics. We obtain up-to-date constraints on the reconstructed inflationary potential, derived from the WMAP 7-year dataset and South Pole Telescope observations, combin...
Article
We discuss the model selection problem for inflationary cosmology. We couple ModeCode, a publicly-available numerical solver for the primordial perturbation spectra, to the nested sampler MultiNest, in order to efficiently compute Bayesian evidence. Particular attention is paid to the specification of physically realistic priors, including the para...
Article
Full-text available
Oscillons are massive, long-lived, localized excitations of a scalar field. We show that in a large class of well-motivated single-field models, inflation is followed by self-resonance, leading to copious oscillon generation and a lengthy period of oscillon domination. These models are characterized by an inflaton potential which has a quadratic mi...
Article
MPI-Defrost extends Frolov's Defrost to an MPI-based cluster environment. This version has been restricted to a single field. Restoring two-field support should be straightforward, but will require some code changes. Some output options may also not be fully supported under MPI. This code was produced to support our own work, and has been made avai...
Article
Full-text available
In a class of recently proposed models, the early universe is strongly coupled and described holographically by a three-dimensional, weakly coupled, super-renormalizable quantum field theory. This scenario leads to a power spectrum of scalar perturbations that differs from the usual empirical LCDM form and the predictions of generic models of singl...
Article
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-l...
Article
ModeCode is a publicly available code that computes the primordial scalar and tensor power spectra for single field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It provides an efficient and robust numerical evaluation of the inflationary perturbation spectrum, and allows the...
Article
Analytical arguments suggest that a large class of scalar field potentials permit the existence of oscillons -- pseudo-stable, non-topological solitons -- in three spatial dimensions. In this paper we numerically explore oscillon solutions in three dimensions. We confirm the existence of these field configurations as solutions to the Klein-Gorden e...
Article
Future astrophysical datasets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single field inflationary m...
Article
We consider the running of the spectral index as a probe of both inflation itself, and of the overall evolution of the very early universe. Surveying a collection of simple single field inflationary models, we confirm that the magnitude of the running is relatively consistent, unlike the tensor amplitude, which varies by orders of magnitude. Given...
Article
Full-text available
PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe, and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second-...
Article
We analyze the evolution of the perturbations in the inflaton field and metric following the end of inflation. We present accurate analytic approximations for the perturbations, showing that the coherent oscillations of the post-inflationary condensate necessarily break down long before any current phenomenological constraints require the universe...
Article
A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the prese...
Article
Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the "parent" bubbles. This process is efficient and cl...