July 2013
·
1,638 Reads
·
13 Citations
Ironmaking & Steelmaking
Refractory wear and skull growth on the hearth walls and the bottom of the blast furnace have been researched. A series of thermocouples were installed in the hearth, and the temperature measurements were recorded in a structured query language every minute. A heat transfer model was used to study the temperature evolution and hearth wear profile using a commercial software package (MATLAB version 5.0) based on computational fluid dynamics. The location of the 1150uC isotherm in the hearth lining has been calculated. An online monitoring tool was used to analyse the temperature distribution in the hearth and offers, to the plant operators, periodic information on the refractory state. Electromotive force (EMF) probes were installed in the hearth to estimate the variations in the liquid level in the hearth and to determine the thermal state (TS) evolution. Good correlation is seen between EMF and TS, and the EMF amplitudes in the different tapholes follow and even precede the local TS.