Ralph Bock's research while affiliated with Max Planck Institute of Molecular Plant Physiology and other places

Publications (378)

Preprint
Full-text available
In eukaryotic cells, phosphorus is assimilated and utilized primarily as phosphate (Pi). Pi homeostasis is mediated by transporters that have not yet been adequately characterized in green algae. This study reports on CrPHT4-7 from Chlamydomonas reinhardtii , a member of the PHT4 transporter family, which exhibits remarkable similarity to AtPHT4;4...
Article
Full-text available
The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis for most life on Earth, is catalyzed by photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII require...
Preprint
Full-text available
The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis of life on Earth, is catalyzed by the photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII requires...
Article
Full-text available
In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco...
Article
Full-text available
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts f...
Article
Full-text available
Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis...
Article
Full-text available
In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high‐level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined...
Article
Full-text available
The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal...
Article
Full-text available
Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. A central regulator of the electron transport chain is ATP synthase, the molecular motor that harnesses the chemiosmotic potential generated f...
Article
Full-text available
PSBO is essential for the assembly of the oxygen‐evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate‐inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally und...
Article
Spider mites are serious pests and have evolved significant resistance to many chemical pesticides, thus making their control challenging. Several insect pests can be combated by plastid‐mediated RNA interference (PM‐RNAi), but whether PM‐RNAi can be utilized to control noninsect pests is unknown. Here, we show that three species of spider mites (...
Article
Full-text available
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recogn...
Article
Full-text available
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast...
Article
Excessive Na⁺ in soils inhibits plant growth. Here, we report that Na⁺ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a “sodium-sensing niche” in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca²⁺ wave dose-dependently increase with r...
Article
Full-text available
Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (...
Article
Full-text available
The conversion of light energy to chemical energy by photosynthesis requires the concerted action of large protein complexes in the thylakoid membrane. Recent work has provided fundamental insights into the three-dimensional structure of these complexes, but how they are assembled from hundreds of parts remains poorly understood. Particularly littl...
Article
Full-text available
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside...
Article
Expression of double-stranded RNAs (dsRNAs) in plastids offers great potential for the efficient control of chewing insects. However, many insect pests do not consume plant tissue, but feed on the host plant by sucking sap from the vascular system. Whether or not plastid-mediated RNA interference (PM-RNAi) can be employed to control sap-sucking ins...
Article
Significance Thrips are a group of piercing-sucking pest insects that do massive damage in agriculture and horticulture. The western flower thrip is a particularly notorious pest that has spread all over the world and is extremely difficult to control. In this work, we have shown that upon feeding, thrips take up substantial quantities of chloropla...
Article
The plastid (chloroplast) genome of seed plants represents an attractive target of metabolic pathway engineering by genetic transformation. Although the plastid genome is relatively small, it can accommodate large amounts of foreign DNA that precisely integrates via homologous recombination, and is largely excluded from pollen transmission due to t...
Article
Full-text available
Key message Global survey of plastid gene expression during fruit ripening in kiwifruit provides cis-elements for the future engineering of the plastid genome of kiwifruit. A limitation in the application of plastid biotechnology for molecular farming is the low-level expression of transgenes in non-green plastids compared with photosynthetically a...
Article
Full-text available
The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method com...
Article
Plant‐mediated RNA interference (RNAi) has emerged as a promising technology for pest control through expression of double‐stranded RNAs (dsRNAs) targeted against essential insect genes. However, little is known about the underlying molecular mechanisms and whether long dsRNA or short interfering RNAs (siRNAs) are the effective triggers of the RNAi...
Article
Full-text available
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated...
Article
Full-text available
Annatto (Bixa orellana) is a perennial shrub native to the Americas, and bixin, derived from its seeds, is a methoxylated apocarotenoid used as a food and cosmetic colorant. Two previous reports claimed to have isolated the carotenoid cleavage dioxygenase (CCD) responsible for the production of the putative precursor of bixin, the C24 apocarotenal...
Article
Full-text available
Photosynthetically produced electrons provide energy for various metabolic pathways, including carbon reduction. Four Calvin-Benson cycle enzymes and several other plastid proteins are activated in the light by reduction of specific cysteines via thioredoxins, a family of electron transporters operating in redox regulation networks. How does this n...
Preprint
Full-text available
A serious limitation in the application of plastid biotechnology is the low-level expression of transgene in non-green plastids like chromoplasts compared with photosynthetically active chloroplasts. Unlike other fruits, not all chloroplasts are transformed into chromoplast during ripening of red-fleshed kiwifruit ( Actinidia chinensis vs Hongyang)...
Preprint
Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. The central regulator of the electron transport chain is the ATP synthase, the molecular motor that harnesses the chemiosmotic potential gener...
Article
Significance Chloroplast biogenesis is a fundamental process occurring during seedling ontogenesis and leading to plant autotrophy. Which membrane components sterically organize the light-triggered transition of etioplast prolamellar bodies (PLBs) into chloroplast thylakoids, and thus mediate cubic–lamellar transformation, is poorly understood. Her...
Article
Full-text available
The high-value carotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is one of the most potent antioxidants in nature. In addition to its large-scale use in fish farming, the pigment has applications as a food supplement and an active ingredient in cosmetics and in pharmaceuticals for the treatment of diseases linked to reactive oxygen sp...
Article
Full-text available
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ~17% of all human deaths and their management and control...
Article
Full-text available
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded h...
Article
Full-text available
Chronic infection with hepatitis C virus (HCV) remains a leading cause of liver-related pathologies and a global health problem, currently affecting more than 71 million people worldwide. The development of a prophylactic vaccine is much needed to complement the effective antiviral treatment available and achieve HCV eradication. Current strategies...
Article
Full-text available
Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This us...
Chapter
Tomato (Solanum lycopersicum L.), a member of the nightshade family (Solanaceae), is one of the most important vegetable crops and has long been an important model species in plant biology. Plastid biology in tomato is especially interesting due to the chloroplast-to-chromoplast conversion occurring during fruit ripening. Moreover, as tomato repres...
Chapter
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., for expression of insecticidal proteins) and mole...
Article
Full-text available
Background RNA interference (RNAi) has emerged as an efficient tool to control insect pests. When insects ingest double-stranded RNAs (dsRNAs) targeted against essential genes, strong gene silencing and mortality can be induced. To exert their function, dsRNA molecules must pass through the insect’s gut and enter epithelial cells and/or the hemolym...
Article
Full-text available
Plastids (chloroplasts) are the defining organelles of plants and eukaryotic algae. In addition to performing photosynthesis, plastids harbor numerous other metabolic pathways and therefore are often referred to as the biosynthetic center of the plant cell. The chloroplasts of seed plants possess dozens of copies of a circular genome of ∼150 kb tha...
Article
Full-text available
Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in...
Article
De novo fatty acid biosynthesis in plants relies on a prokaryotic-type acetyl-CoA carboxylase (ACCase) that resides in the plastid compartment. Whereas three subunits are encoded by nuclear genes, the plastid gene (accD) encodes the β-carboxyltransferase subunit of ACCase and is essential for cell viability. To facilitate the functional analysis of...
Article
Full-text available
Carotenoids are important isoprenoids produced in the plastids of photosynthetic organisms that play key roles in photoprotection and antioxidative processes. β-carotene is generated from lycopene by the lycopene β-cyclase (LCYB). Previously, we demonstrated that the introduction of the Daucus carota (carrot) DcLCYB1 gene into tobacco (cultivar Xan...
Article
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form,...
Article
Full-text available
Recent work has revealed that both plants and animals transfer genomes between cells. In plants, horizontal transfer of entire plastid, mitochondrial, or nuclear genomes between species generates new combinations of nuclear and organellar genomes, or produces novel species that are allopolyploid. The mechanisms of genome transfer between cells are...
Article
Full-text available
The pathway of photosystem II (PSII) assembly is well understood, and multiple auxiliary proteins supporting it have been identified, but little is known about rate-limiting steps controlling PSII biogenesis. In the cyanobacterium Synechocystis PCC6803 and the green alga Chlamydomonas reinhardtii, indications exist that the biosynthesis of the chlo...
Article
Full-text available
Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically...
Article
Molecular farming intends to use crop plants as biofactories for high value-added compounds following application of a wide range of biotechnological tools. In particular, the conversion of nonfood crops into efficient biofactories is expected to be a strong asset in the development of a sustainable bioeconomy. The ‘nonfood’ status combined with th...
Article
Full-text available
Abstract The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic inter...
Article
Full-text available
Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without caro...
Article
Full-text available
Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment–protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without caro...
Article
Full-text available
Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment–protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without caro...
Preprint
The pathway of photosystem II assembly is well understood and multiple auxiliary proteins supporting it have been identified. By contrast, little is known about rate-limiting steps controlling PSII biogenesis. In the green alga Chlamydomonas reinhardtii , biosynthesis of the chloroplast-encoded D2 reaction center subunit (PsbD) limits PSII accumula...
Article
Full-text available
Agriculture is by far the biggest water consumer on our planet, accounting for 70 percent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently (‘more crop per drop’). Water‐use efficiency (WUE) and drought tolerance of crops are complex traits that are determined...
Preprint
Full-text available
Incompatibility between the cytoplasm and the nucleus is considered as major factor in species formation, but mechanistic understanding is poor. In evening primroses, a model plant for organelle genetics and population biology, hybrid offspring regularly displays chloroplast-nuclear incompatibility. These incompatibilities affect photosynthesis, a...
Article
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role, and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and pla...
Article
The chloroplast glutamyl-tRNA (tRNAGlu) is unique in that it has two entirely different functions. In addition to acting in translation, it serves as substrate of glutamyl-tRNA reductase, the enzyme catalyzing the committed step in the tetrapyrrole biosynthetic pathway. How the tRNAGlu pool is distributed between the two pathways and whether tRNAGl...
Article
Full-text available
Base editors (BEs) are RNA-guided CRISPR-Cas-derived genome editing tools that induce single-nucleotide changes. The limitations of current BEs lie in their low precision (especially when multiple target nucleotides of the deaminase are present within the activity window) and their restriction to targets that are in proper distance from the PAM seq...
Article
Full-text available
Transplastomic potato plants expressing double-stranded RNA (dsRNA) targeted against essential genes of the Colorado potato beetle (CPB) can be lethal to larvae by triggering an RNA interference (RNAi) response. High accumulation levels of dsRNAs in plastids are crucial to confer an efficient RNAi response in the insects. However, whether length an...
Article
Full-text available
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in mesophyll of...
Article
Full-text available
Modified nucleosides in tRNAs are critical for protein translation. N¹-methylguanosine-37 and N¹-methylinosine-37 in tRNAs, both located at the 3’-adjacent to the anticodon, are formed by Trm5. Here we describe Arabidopsis thaliana AtTRM5 (At3g56120) as a Trm5 ortholog. Attrm5 mutant plants have overall slower growth as observed by slower leaf init...
Preprint
RNA interference (RNAi) has emerged as an efficient tool to control insect pests. When lethal double-stranded RNAs (dsRNAs) were ingested by the insects, strong gene silencing and mortality can be induced. To exert their function, dsRNA molecules must pass through insect's gut and enter epithelial cells and/or the hemolymph. Gut bacteria are known...
Preprint
Transplastomic potato plants expressing double-stranded RNA (dsRNA) targeted against essential genes of the Colorado potato beetle (CPB) can be lethal to larvae by triggering an RNA interference (RNAi) response. High accumulation levels of dsRNAs in plastids are crucial to confer an efficient RNAi response in the insects. However, whether length an...
Article
Full-text available
Acclimation to changing light intensities poses major challenges to plant metabolism and has been shown to involve regulatory adjustments in chloroplast gene expression. However, this regulation has not been examined at a plastid genome-wide level and for many genes, it is unknown whether their expression responds to altered light intensities. Here...
Article
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded N...
Article
Full-text available
In chloroplasts and plant mitochondria, specific cytidines in mRNAs are posttranscriptionally converted to uridines by RNA editing. Editing sites are recognized by nucleus-encoded RNA-binding proteins of the pentatricopeptide repeat (PPR) family, which bind upstream of the editing site in a sequence-specific manner and direct the editing activity t...
Article
Full-text available
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for larg...
Article
Full-text available
Organellar (plastid and mitochondrial) genomes play an important role in resolving phylogenetic relationships, and next-generation sequencing technologies have led to a burst in their availability. The ongoing massive sequencing efforts require software tools for routine assembly and annotation of organellar genomes as well as their display as phys...
Article
Full-text available
Retrograde signals emanate from the DNA-containing cell organelles (plastids and mitochondria) and control the expression of a large number of nuclear genes in response to environmental and developmental cues. Previous studies on retrograde signaling have mainly analyzed the regulation of nuclear gene expression at the transcript level. To determin...
Article
Full-text available
Horizontal gene transfer has occurred between organisms of all domains of life and contributed substantially to genome evolution in both prokaryotes and eukaryotes. Phylogenetic evidence suggests that eukaryotic genes horizontally transferred to bacteria provided useful new gene functions that improved metabolic plasticity and facilitated adaptatio...
Preprint
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in mesophyll of...