R. Birdsey’s research while affiliated with Woodwell Climate Research Center and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (44)


Figure 6. Change in net ecosystem productivity (relative to the baseline Figure S1) normalized by forest area, for selected mitigation scenarios. W-Can Higher harvested wood utilization + harvest residues for bioenergy + shift to Longer Lived wood Products (LLP); E-Can Harvest residues for bioenergy + shift to LLP; SE-US Increase afforestation; N-US Extended harvest rotation and LLP; N-MX Reduced deforestation + increased forest recovery + increased harvest + increased forest productivity + LLP; E-MX Reduced deforestation.
Figure S1. Ecosystem Productivity (NEP) time series for the baseline scenarios at each of the six study sites.
A synthesis of climate change mitigation options based on regional case studies of the North American forest sector using a harmonized modeling approach
  • Technical Report
  • Full-text available

October 2020

·

465 Reads

·

7 Citations

·

·

·

[...]

·

Managing forests and forest products to help mitigate climate change was quantified in three coordinated studies involving six regions within North America. Each country-specific study examined several mitigation scenarios in a comparative analysis, using harmonized tools with site-specific data and a systems approach that included forest ecosystem, harvested wood products, and substitution benefits relative to a forward-looking baseline. Here we synthesized the North American case studies by comparing normalized annual mitigation potential (net change in emissions and removals relative to the baseline), and examined differences in ecosystems and drivers that affected the ranking of mitigation activities. Considering all six study sites, the highest mitigation potential over the 32-year study period occurred in southern temperate and tropical regions where avoided deforestation, increased afforestation, and accelerated forest recovery after disturbance resulted in the greatest reduction in net emissions. The only effective scenario common to all regions was increased production of longer-lived wood products, where longer product lifetimes delayed emissions to the atmosphere, and increased substitution benefits from using wood in place of more emissions-intensive materials. We conclude that regionally differentiated mitigation scenarios that take into account diverse ecosystems dynamics and drivers offer the highest mitigation potential and a practical way to allocate resources for forestry activities.

Download

Beyond MRV: High-resolution forest carbon modeling for climate mitigation planning over Maryland, USA

April 2019

·

357 Reads

·

50 Citations

Forests are important ecosystems that are under increasing pressure from human use and environmental change, and have a significant ability to remove carbon dioxide from the atmosphere, and are therefore the focus of policy efforts aimed at reducing deforestation and degradation as well as increasing afforestation and reforestation for climate mitigation. Critical to these efforts is the accurate monitoring, reporting and verification of current forest cover and carbon stocks. For planning, the additional step of modeling is required to quantitatively estimate forest carbon sequestration potential in response to alternative land-use and management decisions. To be most useful and of decision-relevant quality, these model estimates must be at very high spatial resolution and with very high accuracy to capture important heterogeneity on the land surface and connect to monitoring efforts. Here, we present results from a new forest carbon monitoring and modeling system that combines high-resolution remote sensing, field data, and ecological modeling to estimate contemporary above-ground forest carbon stocks, and project future forest carbon sequestration potential for the state of Maryland at 90 m resolution. Statewide, the contemporary above-ground carbon stock was estimated to be 110.8 Tg C (100.3–125.8 Tg C), with a corresponding mean above-ground biomass density of 103.7 Mg ha⁻¹ which was within 2% of independent empirically-based estimates. The forest above-ground carbon sequestration potential for the state was estimated to be much larger at 314.8 Tg C, and the forest above-ground carbon sequestration potential gap (i.e. potential-current) was estimated to be 204.1 Tg C, nearly double the current stock. These results imply a large statewide potential for future carbon sequestration from afforestation and reforestation activities. The high spatial resolution of the model estimates underpinning these totals demonstrate important heterogeneity across the state and can inform prioritization of actual afforestation/reforestation opportunities. With this approach, it is now possible to quantify both the forest carbon stock and future carbon sequestration potential over large policy relevant areas with sufficient accuracy and spatial resolution to significantly advance planning.


Chapter 9: Forests

December 2018

·

3,068 Reads

·

7 Citations

KEY FINDINGS 1. Net uptake of 217 teragrams of carbon (Tg C) per year by the forest sector in North America is well documented and has persisted at about this level over the last decade. The strength of net carbon uptake varies regionally, with about 80% of the North American forest carbon sink occurring within the United States (high confidence, very likely). 2. Forest regrowth following historical clearing plays a substantial role in determining the size of the forest carbon sink, but studies also suggest sizeable contributions from growth enhancements such as carbon dioxide fertilization, nitrogen deposition, or climate trends supporting accelerated growth (medium confidence). Resolving each factor’s contribution is a major challenge and critical for developing reliable predictions. 3. Annual harvest removals from forestry operations in select regions decrease forest carbon stocks, but this decline in stocks is balanced by post-harvest recovery and regrowth in forestlands that were harvested in prior years. Removal, processing, and use of harvested biomass causes carbon emissions outside of forests, offsetting a substantial portion (about half) of the net carbon sink in North American forests (high confidence). 4. Recent trends in some disturbance rates (e.g., wildfires and insects) have diminished the strength of net forest carbon uptake across much of North America. Net loss of forest carbon stocks from land conversions reduced sink strength across the continent by 11 Tg C per year, with carbon losses from forest conversion exceeding carbon gains from afforestation and reforestation (medium confidence). 5. Several factors driving the carbon sink in North American forests are expected to decline over coming decades, and an increasing rate of natural disturbance could further diminish current net carbon uptake (medium confidence). Note: Confidence levels are provided as appropriate for quantitative, but not qualitative, Key Findings and statements.


Maps of study areas for managed public forests within Cranbrook, British Columbia (Timber Supply Area 05) and Dog River-Matawin, Ontario (Management Unit 177), and the locations of these Forest Management Units within Canada (inset)
Map of transportation distances for cutblocks in Cranbrook and Dog River
Cumulative mitigation for Cranbrook and Dog River FMUs with (a, b) displacement factors (DF) based on FMU-level energy substitution (DFe) and broad end-uses for solid wood products (DFp) or (c, d) displacement factors based on community-level energy substitution and incremental solid wood products for use in building construction. Negative values indicate a reduction in cumulative emissions. Abbreviations: LLP Longer Lived Products, Util. + Res. Higher Utilization combined with Harvest Residues for Bioenergy
Total and component cumulative mitigation in 2050 for Cranbrook and Dog River FMUs with (a, b) displacement factors (DF) based on FMU-level energy substitution (DFe) and broad end-uses for solid wood products (DFp) or (c, d) displacement factors based on community-level energy substitution and incremental solid wood products for use in building construction. The black horizontal line shows the total mitigation. LLP longer lived products, Util. higher utilization, Bioenergy or Res. harvest residues for bioenergy
Climate change mitigation in Canada's forest sector: A spatially explicit case study for two regions

September 2018

·

387 Reads

·

34 Citations

Carbon Balance and Management

Background: We determine the potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions by changes in management practices and wood use for two regions within Canada's managed forest from 2018 to 2050. Our modeling frameworks include the Carbon Budget Model of the Canadian Forest Sector, a framework for harvested wood products that estimates emissions based on product half-life decay times, and an account of marginal emission substitution benefits from the changes in use of wood products and bioenergy. Using a spatially explicit forest inventory with 16 ha pixels, we examine mitigation scenarios relating to forest management and wood use: increased harvesting efficiency; residue management for bioenergy; reduced harvest; reduced slashburning, and more longer-lived wood products. The primary reason for the spatially explicit approach at this coarse resolution was to estimate transportation distances associated with delivering harvest residues for heat and/or electricity production for local communities. Results: Results demonstrated large differences among alternative scenarios, and from alternative assumptions about substitution benefits for fossil fuel-based energy and products which changed scenario rankings. Combining forest management activities with a wood-use scenario that generated more longer-lived products had the highest mitigation potential. Conclusions: The use of harvest residues to meet local energy demands in place of burning fossil fuels was found to be an effective scenario to reduce GHG emissions, along with scenarios that increased the utilization level for harvest, and increased the longevity of wood products. Substitution benefits from avoiding fossil fuels or emissions-intensive products were dependent on local circumstances for energy demand and fuel mix, and the assumed wood use for products. As projected future demand for biomass use in national GHG mitigation strategies could exceed sustainable biomass supply, analyses such as this can help identify biomass sources that achieve the greatest mitigation benefits.




Figure 5. Summary of the forest biomass carbon sinks attributing to areal expansion and increase in carbon density for planted and natural forests of China in the period 1977-2008.
The relative contributions of forest growth and areal expansion to forest biomass carbon

January 2016

·

81 Reads

·

49 Citations

Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and it is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest biomass C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests has been a larger contributor to C sinks than forest growth for planted forests in China (62.2 % vs. 37.8 %). However, for natural forests, forest growth has made a larger contribution than areal expansion (60.4 % vs. 39.6 %). For all forests (planted and natural forests), growth in area and density has contributed equally to the total C sinks of forest biomass in China (50.4 % vs. 49.6 %).The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 % to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends, owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation will continue to increase the C sink of China's forests in the future, subject to sustainable forest growth after the establishment of plantations.


Hacia un enfoque Tier 3 en paisajes estratégicos en México, modelos ecosistémicos y sitios de monitoreo intensivo del carbono

September 2015

·

21 Reads

México desarrolla un sistema de medición, reporte y verificación de los flujos de gases de efecto invernadero (GEI) asociados a REDD+. Este sistema permitirá consolidar el reporte nacional de emisiones de GEI a un nivel de incertidumbre intermedio o Tier 2, a la vez de transitar hacia un menor nivel incertidumbre o Tier 3, con el uso de modelos de la dinámica del carbono e información de sitios de monitoreo intensivo del carbono. Por ello, desde el 2012 la CONAFOR coordina un esfuerzo de colaboración institucional nacional e internacional, para la compilación de información derivada de inventarios forestales, teledetección, datos de perturbación, y modelación consistente con las Guías de Buenas Prácticas del IPCC para la mejora de información sobre la dinámica del carbono forestal multitemporal y multi-espacial en México. Actualmente, se tienen resultados preliminares desarrollados para los cinco estados de Acción Temprana REDD+, usando como principal insumo al modelo CBM-CFS3 la misma información que se emplea en el enfoque Tier 2. También, se tienen resultados de pruebas para la reducción de incertidumbre en insumos y supuestos empleados. Paralelamente, se analiza información sobre reservorios y flujos de carbono derivados de la red de sitios de monitoreo intensivo, a fin de completar en julio del 2015, protocolos de medición y recomendaciones para el análisis de datos de campo tipo el Inventario Nacional Forestal y de Suelos, mejoras a las estimaciones de GEI regionales, validación de los resultados de modelación, evaluación costo-efectividad y nivel de incertidumbre, además de transferencia de información y experiencias, mediante publicaciones y el fortalecimiento de capacidades a instituciones. http://foris.fao.org/wfc2015/api/file/5547c18315ae74130aee69d5/contents/1a9551d5-d5f1-45d6-9ef0-6764f93ed4c1.pdf


Fig. 1. Estratificación nacional en 94 unidades espaciales (intersección de estados y ecoregiones), remarcando los cinco estados seleccionados para el uso del modelo CBM-CFS3.  
Fig. 2. Contribución relativa de cada estado respecto a la suma promedio anual de las emisiones/remociones de GEI de los cinco estados REDD+.  
Fig. 3. Estimación del balance neto de emisiones de GEI por DA y categorías de uso/transiciones para Chiapas (1993-2011). TF: Tierras Forestales, OT: Otras Tierras. -Escala local. El IPCC recomienda que los resultados de los modelos sean documentados y comparados respecto a información derivada de mediciones en campo (IPCC 2006, 2011). En México, existen pocas publicaciones que reporten el contenido del carbono forestal para los cinco reservorios; por lo general, las estimaciones se derivan de una sola medición en el tiempo y la localización de las parcelas es dirigida (sesgo). Estas características limitan la posibilidad de entender (y comparar con el modelo), las variaciones anuales de los reservorios por el efecto de perturbaciones naturales o antropogénicas, a nivel de paisaje. Actualmente, la CONAFOR y la red Mex-SMIC han establecido sitios de monitoreo intensivo del carbono en áreas prioritarias para REDD+. El objetivo es caracterizar la dinámica anual del carbono a un nivel de precisión Tier 3, combinando observaciones extensivas de inventario forestales y teledetección, con mediciones intensivas con experimentos de descomposición de materia orgánica muerta o mediciones del intercambio directo de GEI entre atmósfera y la vegetación (Birdsey et al., 2013, Olguín et al., 2015). El tipo de datos y nivel de precisión generados, permite la calibración del modelo, así como la validación y " escalamiento " de sus resultados para un mosaico de condiciones del bosque y actividades productivas.  
Fig. 5. Estimación del potencial de mitigación considerando la reducción acumulativa del 2.5% anual de la tasa de deforestación bruta del 2001-2011.  
Hacia un enfoque Tier 3 en paisajes estratégicos en México, modelos ecosistémicos y sitios de monitoreo intensivo del carbono

September 2015

·

473 Reads

México desarrolla un sistema de medición, reporte y verificación de los flujos de gases de efecto invernadero (GEI) asociados a REDD+. Este sistema permitirá consolidar el reporte nacional de emisiones de GEI a un nivel de incertidumbre intermedio o Tier 2, a la vez de transitar hacia un menor nivel incertidumbre o Tier 3, con el uso de modelos de la dinámica del carbono e información de sitios de monitoreo intensivo del carbono. Por ello, desde el 2012 la CONAFOR coordina un esfuerzo de colaboración institucional nacional e internacional, para la compilación de información derivada de inventarios forestales, teledetección, datos de perturbación, y modelación consistente con las Guías de Buenas Prácticas del IPCC para la mejora de información sobre la dinámica del carbono forestal multitemporal y multi-espacial en México. Actualmente, se tienen resultados preliminares desarrollados para los cinco estados de Acción Temprana REDD+, usando como principal insumo al modelo CBM-CFS3 la misma información que se emplea en el enfoque Tier 2. También, se tienen resultados de pruebas para la reducción de incertidumbre en insumos y supuestos empleados. Paralelamente, se analiza información sobre reservorios y flujos de carbono derivados de la red de sitios de monitoreo intensivo, a fin de completar en julio del 2015, protocolos de medición y recomendaciones para el análisis de datos de campo tipo el Inventario Nacional Forestal y de Suelos, mejoras a las estimaciones de GEI regionales, validación de los resultados de modelación, evaluación costo-efectividad y nivel de incertidumbre, además de transferencia de información y experiencias, mediante publicaciones y el fortalecimiento de capacidades a instituciones. http://foris.fao.org/wfc2015/api/file/5547c18315ae74130aee69d5/contents/1a9551d5-d5f1-45d6-9ef0-6764f93ed4c1.pdf


Hacia un enfoque Tier 3 en paisajes estratégicos en México, modelos ecosistémicos y sitios de monitoreo intensivo del carbono

September 2015

·

26 Reads

·

3 Citations

México desarrolla un sistema de medición, reporte y verificación de los flujos de gases de efecto invernadero (GEI) asociados a REDD+. Este sistema permitirá consolidar el reporte nacional de emisiones de GEI a un nivel de incertidumbre intermedio o Tier 2, a la vez de transitar hacia un menor nivel incertidumbre o Tier 3, con el uso de modelos de la dinámica del carbono e información de sitios de monitoreo intensivo del carbono. Por ello, desde el 2012 la CONAFOR coordina un esfuerzo de colaboración institucional nacional e internacional, para la compilación de información derivada de inventarios forestales, teledetección, datos de perturbación, y modelación consistente con las Guías de Buenas Prácticas del IPCC para la mejora de información sobre la dinámica del carbono forestal multitemporal y multi-espacial en México. Actualmente, se tienen resultados preliminares desarrollados para los cinco estados de Acción Temprana REDD+, usando como principal insumo al modelo CBM-CFS3 la misma información que se emplea en el enfoque Tier 2. También, se tienen resultados de pruebas para la reducción de incertidumbre en insumos y supuestos empleados. Paralelamente, se analiza información sobre reservorios y flujos de carbono derivados de la red de sitios de monitoreo intensivo, a fin de completar en julio del 2015, protocolos de medición y recomendaciones para el análisis de datos de campo tipo el Inventario Nacional Forestal y de Suelos, mejoras a las estimaciones de GEI regionales, validación de los resultados de modelación, evaluación costo-efectividad y nivel de incertidumbre, además de transferencia de información y experiencias, mediante publicaciones y el fortalecimiento de capacidades a instituciones.


Citations (14)


... Interest in HWPs as a means for climate mitigation has grown over the years, and generating long-lived HWPs has been shown to have a high mitigation potential (Smyth et al. 2018). Regional differences in ecosystems and management priorities can alter the effectiveness of general mitigation strategies (Smyth et al. 2020), causing regionally specific data to be an influential factor for mitigation analyses. Our estimates of specific GHG emissions for the various stages of numerous HWPs using Canadian-specific fuel and energy emission factors can therefore help support more accurate forestry mitigation assessments. ...

Reference:

A Review of Cradle-to-Gate Greenhouse Gas Emission Factors for Canada’s Harvested Wood Products
A synthesis of climate change mitigation options based on regional case studies of the North American forest sector using a harmonized modeling approach

... The spatial monitoring of ecosystem structures and diversity metrics is therefore crucial. Innovative approaches are essential in providing data that can effectively guide conservation policies, inform climate change mitigation strategies [10,11], and support the sustainable management of natural resources. However, the conservation of tropical savannas is challenged by the lack of detailed information on species diversity on a regional scale. ...

Beyond MRV: High-resolution forest carbon modeling for climate mitigation planning over Maryland, USA

... Suter et al. (2017) considered the overall average climate effects of wood use in Switzerland. Several studies have also accounted for the conflict between the decreased forest carbon sinks and increased carbon storage and substitution benefits in HWPs, when the latter are attained by increasing the harvest volume in a country (Werner et al. 2010;Kallio et al. 2013;Smyth et al. 2014Smyth et al. , 2018Braun et al. 2016;Matsumoto et al. 2016;Soimakallio et al. 2016Soimakallio et al. , 2021Heinonen et al. 2017;Valade et al. 2018;Jonsson et al. 2021;Schulte et al. 2022;Hurmekoski et al. 2023). The question of whether the increased harvest and production of HWPs is beneficial from a climate change mitigation perspective depends on several factors, among which the structure of forests in the region and the products assumed to be produced from the increased harvests are important. ...

Climate change mitigation in Canada's forest sector: A spatially explicit case study for two regions

Carbon Balance and Management

... These factors are thus regarded as primary carbon budget drivers for forest enterprises. It is known that carbon sequestration potential in forest ecosystems is closely linked to increases in forest area [58]. In the Greater Khingan Mountains, increasing elevation results in colder temperatures and shorter growing seasons, which constrain forest growth and biomass accumulation. ...

The relative contributions of forest growth and areal expansion to forest biomass carbon

... Reforestation on national forests, in particular, is likely to play a significant role in efforts to enhance long-term carbon sequestration (Dumroese et al. 2019). Areas affected by wildfires, droughts, and other disturbances provide an important near-term opportunity to significantly scale up reforestation, provided conditions are sufficient for long-term growth and productivity (Sample et al. 2015, Halofsky et al. 2018, Dumroese et al. 2019, Meyer et al. 2021. For instance, Sample (2017) estimates that reforesting productive sites on non-stocked Forest Service-managed lands across the contiguous United States has the potential to sequester more than 16 MMT CO2 eq. each year, enough to offset emissions from nearly 3.5 million cars (U.S. EPA, n.d.). ...

Forest carbon conservation and management: Integration with sustainable forest management for multiple resource values and ecosystem services

... Vegetation is one major carbon sequester and carbon pool in terrestrial ecosystems [2]. The expansion of vegetation areas and the increase in vegetation carbon density can both enhance vegetation carbon storage [3,4]. As a member of the Paris Agreement, China has actively carried out various emission reduction measures and promoted carbon sequestration through continuous limestone areas is Cryptomeria japonica var. ...

The relative contributions of forest growth and areal expansion to forest biomass carbon sinks in China

Biogeosciences Discussions

... With increasing focus on forests in the context of climate change and potential mitigation strategies for anthropogenic C emissions (Birdsey and others 2007; IPCC 2007), it is important to quantify the impacts associated with anthropogenic and natural disturbance regimes, particularly wildfire. Although numerous studies have investigated the effects of fire on C dynamics, very few to date have analyzed the full gradient of burn severity and quantified pyrogenic C emission, C pools, and postfire C balance across multiple forest types in the first few years following disturbance. ...

North American Forests

... Heterogeneity is further accentuated by a long history of nonuniform forest management practices including thinning and clearcuts, resulting in increased variability in stand age and structure. Forests in Northern Wisconsin typically have an age distribution centered around "middle age," or 40-90 years (Birdsey et al., 2014;Wisconsin Department of Natural Resources, 2019). This age pattern is reflective of the fact that the majority of the forested land was logged in the mid-19th to early 20th century to clear land for agricultural purposes (Desai et al., 2008;Gough et al., 2007;Rhemtulla et al., 2009), which was followed by subsequent periods of agricultural land abandonment, reforestation, fire suppression, and intensive timber harvest (Birdsey et al., 2006). ...

Past and prospective carbon stocks in forests of northern Waconsin: a report from the Chequamegon-Nicolet National Forest Climate Change Response Framework

... Although mangrove structures are well defined in space, they are rarely, in a condition of steadystate equilibrium at the decadal time scale (Lugo 1980). Notably, the C cycle in forests is closely linked to the forest life cycle, which can last hundreds of years (Deng et al. 2013). Thus, the distribution of C in mangroves may emerge due to changes in coastal morphology . ...

The use of forest stand age information in an atmospheric CO2 inversion applied to North America

... Methods ISCN dataset-We used the ISCN map-based data tool to download a dataset of 319,316 soil layers from 52,178 profiles in CONUS. The dataset included geographic coordinates, descriptive, physical, chemical, and metadata for all sites, profiles, and layers contained in the download, which contained data from multiple sources (54,55,56,57,58,59). Next, we proceeded through a series of filtering, gap-filling, and validation steps, described in greater detail in the Supporting Information. ...

Database for landscape-scale carbon monitoring sites

Notes

·

·

R Birdsey

·

[...]

·

others