Qingfu Zhang’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Guest Editorial: Special Issue on Evolutionary Algorithms Based on Probabilistic Models
  • Article

January 2010

·

15 Reads

·

10 Citations

IEEE Transactions on Evolutionary Computation

J.A. Lozano

·

Qingfu Zhang

·

P. Larraaga

In this paper, evolutionary algorithms based on probabilistic models (EAPMs) have been recognized as a new computing paradigm in evolutionary computation. There is no traditional crossover or mutation in EAPMs. Instead, they explicitly extract global statistical information from their previous search and build a probability distribution model of promising solutions, based on the extracted information. New solutions are then sampled from the model thus built to replace old solutions. Instances of EAPMs include Population-Based Incremental Learning, the Univariate Marginal Distribution Algorithm (UMDA), Mutual Information Maximization for Input Clustering, the Factorized Distribution Algorithm, the Bayesian Optimization Algorithm, the Learnable Evolution Model and Estimation of Bayesian Networks Algorithms, to name a few. EAPMs have been successfully applied for solving many optimization and search problems.