Q. Chen’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Impact of a moving person on transmission of airborne contaminants in airliner cabins
  • Article

January 2011

·

2,638 Reads

Q. Chen

·

S. Mazumdar

·

S. Poussou

·

C.-H. Lin

In 2003, Severe Acute Respiratory Syndrome (SARS) affected more than 8000 patients and caused 774 deaths in 26 countries across five continents within months after its emergence in rural China. The pandemic illustrated the dramatic role of globalization and air travel in the dissemination of an emerging infectious disease. Other cases of airborne infectious diseases transmitted in airliners in recent years include tuberculosis, influenza, measles, and mumps. Computational Fluid Dynamics (CFD) is a very attractive tool in studying the transmission of airborne contaminants in an airliner cabin as it is inexpensive and flexible in changing thermo-fluid conditions inside the cabins compared to experimental measurements. Due to many approximations used in CFD, its results should always be validated using high quality experimental data. By using the measured velocity fields obtained from a small-scale, water cabin mockup, this study found that CFD can capture the fundamental flow features although the discrepancies between the measured and computed results exist. The validated CFD model was then used to study gaseous contaminant transport inside an airliner cabin. The CFD results show that the movement of a person might have resulted in the spread of SARS viruses to the passengers seated far away from the contagious passenger in the flight from Hong Kong to Beijing in 2003.


Experimental investigation of flow and contaminant transport in a wake from a moving body inside a small-scale aircraft cabin

January 2009

·

13 Reads

S.B. Poussou

·

S. Mazumdar

·

·

[...]

·

Q. Chen

Experiments were performed in a one-tenth scale, water-based aircraft cabin model to investigate the effect of a moving body on flow and contaminant transport. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements showed a downwash flow along the vertical centerline of the moving body for the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation.