Philip L Munday's research while affiliated with James Cook University and other places

Publications (424)

Article
Full-text available
This Formal Comment uses re-analysis after appropriate corrections to claim that the extreme decline effect reported by Clements et al. is a statistical artefact caused by the way they corrected for zeros in percentage data, exacerbated by errors in data compilation, selective data inclusions and missing studies with strong effects.
Preprint
Full-text available
Genetic variation is essential for adaptation to rapid environmental changes. Identifying genetic variation associated with climate-change related phenotypes is therefore the necessary first step towards predictive models of genomic vulnerability. Here we used a whole-genome scan to identify candidate genetic variants associated with differences in...
Article
Full-text available
The success of individuals during the pelagic larval phase is critical to maintaining healthy and viable populations of coral reef fishes; however, it is also the most environmentally sensitive and energetically demanding life stage. Climate change is increasing the frequency and intensity of marine heatwaves, which could have significant effects o...
Article
Full-text available
The parental environment can alter offspring phenotypes via the transfer of non‐genetic information. Parental effects may be viewed as an extension of (within‐generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate,...
Article
Full-text available
Body size influences many life history traits, with small‐bodied animals tending to have short life spans, high mortality, and greater reproductive effort early in life. In this study, we investigated the life history traits and reproductive strategies of three small‐bodied coral reef gobies of the genus Trimma: Trimma benjamini, T. capostriatum an...
Article
Full-text available
The impacts of climate change are expected to have profound effects on the fisheries of the Pacific Ocean, including its tuna fisheries, the largest globally. This study examined the combined effects of climate change on the yellowfin tuna population using the ecosystem model SEAPODYM. Yellowfin tuna fisheries in the Pacific contribute significantl...
Article
Full-text available
Ocean warming is a threat to marine biodiversity, as it can push marine species beyond their physiological limits. Detrimental effects can occur when marine poikilotherms are exposed to conditions beyond their thermal optima. However, acclamatory mechanisms, such as plasticity, may enable compensation of detrimental effects if warming is experience...
Article
Full-text available
Ocean acidification (OA) is postulated to affect the physiology, behavior, and life‐history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua...
Article
Full-text available
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet it remains to be determined if the activation of beneficial phenotypes requires...
Article
Full-text available
Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus , individual variation in behavioural tolerance to elevated pCO 2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal a...
Preprint
Full-text available
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluct...
Article
On coral reefs, many small coral-associated fishes exhibit high levels of habitat specialisation, which can contribute to their susceptibility to habitat loss. However, high levels of habitat partitioning may buffer communities from the loss of particular habitat types. This study provides a quantitative evaluation of habitat specialisation, substr...
Article
Full-text available
Environmental pCO2 variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental pCO2 fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel c...
Article
Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poor...
Preprint
Full-text available
Environmental CO2 variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental CO2 fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel cyc...
Article
Full-text available
Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reprodu...
Article
Humans are rapidly changing the marine environment through a multitude of effects, including increased greenhouse gas emissions resulting in warmer and acidified oceans. Elevated CO2 conditions can cause sensory deficits and altered behaviours in marine organisms, either directly by affecting end organ sensitivity or due to likely alterations in br...
Article
Ocean acidification (OA) is predicted to affect the physiology of some fishes. To date, most studies have investigated this issue using stable pCO2 levels based on open ocean projections. Yet, most shallow, nearshore systems experience temporal and spatial pCO2 fluctuations. For example, pCO2 on coral reefs is highest at night and lowest during the...
Article
Full-text available
Most laboratory experiments examining the effect of ocean acidification on marine organisms use stable pH/pCO2 treatments based on average projections for the open ocean. However, pH/pCO2 levels vary spatially and temporally in marine environments, and this variation can affect organism responses to pH/pCO2. On coral reefs, diel pH/pCO2 variability...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Elevated CO2 levels predicted to occur by the end of the century can affect the physiology and behavior of marine fishes. For one important survival mechanism, the response to chemical alarm cues from conspecifics, substantial among-individual variation in the extent of behavioral impairment when exposed to elevated CO2 has been observed in previou...
Article
Anthropogenic CO2 emissions are warming and acidifying Earth's oceans, which is likely to lead to a variety of effects on marine ecosystems. Fish populations will be vulnerable to this change, and there is now substantial evidence of the direct and indirect effects of climate change on fish. There is also a growing effort to conceptualise the effec...
Article
Rising water temperature and increased uptake of CO2 by the ocean are predicted to have widespread impacts on marine species. However, the effects are likely to vary, depending on a species’ sensitivity and the geographical location of the population. Here, we investigated the potential effects of elevated temperature and pCO2 on larval growth and...
Article
Ocean acidification, resulting from increasing atmospheric carbon dioxide (CO2) emissions, can affect the physiological performance of some fishes. Most studies investigating ocean acidification have used stable pCO2 treatments based on open ocean predictions. However, nearshore systems can experience substantial spatial and temporal variations in...
Article
Full-text available
Elevated carbon dioxide (CO2) levels can alter ecologically important behaviors in a range of marine invertebrate taxa; however, a clear mechanistic understanding of these behavioral changes is lacking. The majority of mechanistic research on the behavioral effects of elevated CO2 has been done in fish, focusing on disrupted functioning of the GABA...
Preprint
Full-text available
Elevated CO 2 levels predicted to occur by the end of the century can affect the physiology and behaviour of marine fishes. For one important survival mechanism, the response to chemical alarm cues from conspecifics, substantial among-individual variation in the extent of behavioural impairment when exposed to elevated CO 2 has been observed in pre...
Article
Elevated CO2 levels have been shown to affect metabolic performance in some coral reef fishes. However, all studies to date have employed stable elevated CO2 levels, whereas reef habitats can experience substantial diel fluctuations in pCO2 ranging from ±50 to 600 μatm around the mean, fluctuations that are predicted to increase in magnitude by the...
Article
Full-text available
Elevated temperature can have detrimental effects on the physiological performance of many marine organisms. However, phenotypic plasticity may enable some populations to maintain their performance under thermal stress. Two longitudinally separated populations of the coral reef fish, Acanthochromis polyacanthus from the Great Barrier Reef have show...
Article
Full-text available
The marine heatwave of 2016 was one of the longest and hottest thermal anomalies recorded on the Great Barrier Reef, influencing multiple species of marine ectotherms, including coral reef fishes. There is a gap in our understanding of what the physiological consequences of heatwaves in wild fish populations are. Thus, in this study, we used liver...
Article
Full-text available
Under projected levels of ocean acidification, shifts in energetic demands and food availability could interact to effect the growth and development of marine organisms. Changes to individual growth rates could then flow on to influence emergent properties of social groups, particularly in species that form size-based hierarchies. To test the poten...
Article
Full-text available
Anthropogenic CO 2 emissions are causing global ocean warming and ocean acidification. The early life stages of some marine fish are vulnerable to elevated ocean temperatures and CO 2 concentrations, with lowered survival and growth rates most frequently documented. Underlying these effects, damage to different organs has been found as a response t...
Article
Full-text available
Maladaptive behavioural disturbances have been reported in some fishes and aquatic invertebrates exposed to projected future CO2 levels. These disturbances have been linked to altered ion gradients and neurotransmitter function in the brain. Still, it seems surprising that the relatively small ionic changes induced by near-future CO2 levels can hav...
Article
Full-text available
As climate change advances, coastal marine ecosystems are predicted to experience increasingly frequent and intense heatwaves. At the same time, already variable CO2 levels in coastal habitats will be exacerbated by ocean acidification. High temperature and elevated CO2 levels can be stressful to marine organisms, especially during critical early l...
Article
Elevated seawater CO2 can cause a range of behavioural impairments in marine fishes. However, most studies to date have been conducted on small benthic species and very little is known about how higher oceanic CO2 levels could affect the behaviour of large pelagic species. Here, we tested the effects of elevated CO2, and where possible the interact...
Article
Understanding the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The Deepwater Horizon oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the...
Article
Full-text available
Cleaning interactions are textbook examples of mutualisms. On coral reefs, most fishes engage in cooperative interactions with cleaners fishes, where they benefit from ectoparasite reduction and ultimately stress relief. Furthermore, such interactions elicit beneficial effects on clients' ecophysiology. However, the potential effects of future ocea...
Article
Full-text available
Habitat characteristics play an important role in determining the structure of fish communities. The decline in fish diversity and abundance with the decline in coral diversity and cover may be explained by habitat specialisation and partitioning among reef fishes and/or preferences for particular corals that are susceptible to disturbance. These p...
Article
In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil was released into the northern Gulf of Mexico from the Deepwater Horizon disa...
Article
Full-text available
Marine heatwaves, which are increasing in frequency, duration and intensity owing to climate change, are an imminent threat to marine ecosystems. On coral reefs, heatwave conditions often coincide with periods of peak recruitment of juvenile fishes and exposure to elevated temperature may affect their development. However, whether differences in th...
Article
Full-text available
Estimating the heritability and genotype by environment (GxE) interactions of performance-related traits (e.g., growth, survival, reproduction) under future ocean conditions is necessary for inferring the adaptive potential of marine species to climate change. To date, no studies have used quantitative genetics techniques to test the adaptive poten...
Article
Full-text available
Squid and many other cephalopods live continuously on the threshold of their environmental oxygen limitations. If the abilities of squid to effectively take up oxygen are negatively affected by projected future carbon dioxide (CO2) levels in ways similar to those demonstrated in some fish and invertebrates, it could affect the success of squid in f...
Article
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for unde...
Article
Full-text available
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit...
Article
Parental effects have been shown to buffer the negative effects of withingeneration exposure to ocean acidification (OA) conditions on the offspring of shallow water marine organisms. However, it remains unknown if parental effects will be impacted by the presence of diel CO2 cycles that are prevalent in many shallow water marine habitats. Here, we...
Article
The establishment of coral microbial communities in early developmental stages is fundamental to coral fitness, but its drivers are largely unknown, particularly for bacteria. Using an in situ reciprocal transplant experiment , we examined the influence of parental, planulation and early recruit environments on the microbiome of brooded offspring i...
Chapter
The evolutionary history of fishes spans geological periods where atmospheric CO2 was much higher than the current-day, yet some extant species are now sensitive to high environmental CO2. Other species have adapted to live in habitats where they naturally encounter very high CO2 levels. This chapter explores the evolutionary history of fishes in r...
Article
‘Multiple drivers’ (also termed ‘multiple stressors’) is the term used to describe the cumulative effects of multiple environmental factors on organisms or ecosystems. Here, we consider ocean acidification as a multiple driver because many inorganic carbon parameters are changing simultaneously, including total dissolved inorganic carbon, CO2, HCO3...
Article
Full-text available
Recent studies demonstrate that diel CO2 cycles, such as those prevalent in many shallow water habitats, can potentially modify the effects of ocean acidification conditions on marine organisms. However, whether the interaction between elevated CO2 and diel CO2 cycles is further modified by elevated temperature is unknown. To test this, we reared j...
Article
Full-text available
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kern...
Article
Full-text available
Extreme thermal events are increasing in frequency and duration as the climate continues to warm, with potential detrimental effects on marine organisms. However, the effects of heatwaves may differ among geographically separated populations depending on their capacity for thermal plasticity. Here, we compared the response to simulated summer heatw...
Article
Full-text available
Global warming will have far‐reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However,...
Article
Full-text available
While there is increasing evidence for habitat specialization in coral reef fishes, the extent to which different corals support different fish communities is not well understood. Here we quantitatively assess the relative importance of different coral species in structuring fish communities and evaluate whether sampling scale and coral colony size...
Article
Full-text available
Epigenetic inheritance is a potential mechanism by which the environment in one generation can influence the performance of future generations¹. Rapid climate change threatens the survival of many organisms; however, recent studies show that some species can adjust to climate-related stress when both parents and their offspring experience the same...
Article
Full-text available
Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the los...