Peter Dembowski’s research while affiliated with University of Tübingen and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (18)


Gruppenerhaltende quadratische Erweiterungen endlicher desarguesscher projektiver Ebenen
  • Article

December 1971

·

3 Reads

·

10 Citations

Archiv der Mathematik

Peter Dembowski

1. Einleitung. Unter einer Erweiterung einer projektiven Ebene P verstehen wir eine projektive Ebene E, die eine zu P isomorphe Unterebene besitzt. Diese Unterebene kann ebenfalls mit P bezeichnet werden, ohne dab Mil~verst/~ndnisse zu beffirchten shad. Eine Erweiterung E yon P heiBt quadratisch, wenn P eine Baer-Unterebene yon E ist (vgl. [2, p. 118]; im endlichen Fall ist dann die Ordnung yon E das Quadrat der Ordnung yon P). Sei E eine Erweiterung yon P und/~ eine Gruppe yon Kollineationen yon P. Wir sagen,/" bleibt bei E erhalten, werm sich/" auf E ausdehnen 1/~Bt, d.h. wenn E eine zu F isomorphe Kollineationsgruppe besitzt, die P festl/~l~t und F auf P treu induziert. Auch diese Kollineationsgruppe yon E wird der Einfachheit halber wieder mit /" bezeichnet. Wit sprechen ha diesem Fall auch yon einer ILErweiterung E yon P. Fiir /~ = 1 sind die Begriffe ,,Erweiterung" und "lLErweiterung" gleichbedeutend. Viele bekannte nichtdesarguessche endliche projektive Ebenen sind quadratische Erweiterungen der desarguesschen Ebenen P(q); vgl. [2, Kap. 5]. Aber bei den meisten dieser Erweiterungen bleiben nur verh/~ltnism/~13ig kleine Unter~ruppen der Kollineationsgruppe PFLs (q) yon P (q) erhalten. ~qur zwei bekannte Klassen quadratischer Erweiterungen yon P (q) erhalten die volle projektive Gruppe PGLs (q) yon P (q), n/~mlich die desarguessehen Ebenen P (q2) und die Ebenen yon HUG~WS [6] zu einem FastkSrper F der Ordnung q2 mit Zentrum GF (q). (Diese Ebenen werden in Abschnitt 2 noch einmal definiert.) In der vorliegenden Note soll gezeigt werden, da$ es andere als die soeben erw/~hnten PGLs (q)-Erweiterungen yon P (q) nicht gibt. Wir werden beweisen:


Generalized Hughes Planes

June 1971

·

7 Reads

·

11 Citations

Canadian Journal of Mathematics

The projective planes discovered in 1957 by Hughes [ 3 ] were originally described by means of a nearfield F satisfying the following conditions: (a) F is finite, (b) the centre and kernel of F coincide, (c) F is of rank 2 over its kernel. (The definitions of these terms will be given in § 2; the terminology used throughout the paper is that of [ 1 ].) Rosati [ 5 ] showed in 1960 that condition (a) is not necessary, thus constructing the first “infinite Hughes planes”. Condition (b), however, plays an essential part also in Rosati's work. The aim in this paper is to show that condition (b) is superfluous as well. For the finite case, this has been remarked by Ostrom [ 4 ] without proof; here we shall show that a “generalized Hughes plane” can be constructed over any nearfield satisfying condition (c) only.





Collineation Groups Containing Perspectivities

January 1967

·

3 Reads

·

2 Citations

Canadian Journal of Mathematics

Let P be a projective plane of finite order n and Γ a group of collineations of P. Gleason (6) and Wagner (10) have shown that if every point of P is the centre, and every line the axis, of a non-trivial perspectivity in Γ, then Γ contains a subgroup of order n ² which consists entirely of elations. It then follows that either P or its dual is a translation plane with respect to at least one line; in fact if Γ has no fixed elements, then P is desarguesian and Γ contains all elations of P. It was shown by Piper (7) and Cofman (4) that the hypotheses of Gleason and Wagner can be relaxed in certain cases, while the same conclusions hold.



Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen

December 1965

·

8 Reads

·

16 Citations

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

Die endlichen desarguesschen projektiven Ebenen sind in letzter Zeit auf versehiedene Weisen gruppentheoretisch charak~erisiert worden, vgl. z.B. [4] und [8]. Die Annahmen, die man tiber die Kollineationsgruppe F einer endliehen Ebene ~ maehen kann, um zu erzwingen, dab ~ desaxguessch ist, kSrmen entweder rein gruppentheoretisch sein, d.h. in Forderungen tiber die abstrakte Struktur yon /" bestehen, oder sie kSnnen yon permutationsgruppentheoretischer Natur, also Annahmen tiber die Art und Weise sein, wie F auf ~ operiert. Die Resultate yon [4] sind im allgemeinen vom ersten Typ (zwar werden deft auch permutationsgruppentheoretisehe Voraussetzungen gemaeht, diese sind abet yon untergeordneter l~atur und mSglicherweise entbehrlieh), die yon



On Finite Inversive Planes

January 1965

·

8 Reads

·

33 Citations


Citations (12)


... In the setting G = H = F m p , p odd, such functions are referred to as planar functions. These have been studied extensively since 1968 in finite geometry, as they enable the construction of finite projective planes [11]. On the other hand, when G = F m 2 and H = F 2 , the functions are known as bent functions. ...

Reference:

Normality of 8-Bit Bent Function
Planes of order n with collineation groups of order n 2
  • Citing Article
  • June 1968

Mathematische Zeitschrift

... We now consider Sidon sets coming from nondesarguesian planes. Although a dizzying variety of nondesarguesian projective planes are known (see [Wei07] or [JJB07]), the existence of a large abelian group of collineations cuts down the possibilities considerably, as established by a fundamental classification theorem of Dembowski and Piper [DP67]. Since we will rely on this theory in the next section, we now briefly summarize what is known and conjectured in this area. ...

Quasiregular collineation groups of finite projective planes
  • Citing Article
  • February 1967

Mathematische Zeitschrift

... As a consequence, the analogue of Theorem 2.7 fails. In addition to this standard counterexample, Dembowski (1962) constructed a plethora of other counterexamples by a processs of free extension. Also Proposition 1.4 fails without topology: in the above example, the pencil of x consists of projective lines. ...

Semiaffine Ebenen
  • Citing Article
  • December 1962

Archiv der Mathematik

... For projective planes, the Hughes planes arise in this context, i.e., if all elations of a Desarguesian Baer subplane of order q of a finite projective plane π of order q 2 extend, then π is either Desarguesian itself, or a Hughes plane, see [6] (and Unkelbach [27] even proved that one only needs to hypothesize the group PSL 3 (q) to act faithfully on π, not necessarily stabilizing a subplane). In fact, one might see some similarities of our proof with arguments in [5], which is a direct predecessor of [6]. ...

Zur Geometrie der GruppenPSL3(q)
  • Citing Article
  • January 1970

Mathematische Zeitschrift

... The existence of Hadamard 2-(51, 25,12) designs and 29,14) designs is known (see [7]), but the classification of designs with these parameters is not. In [1], the authors classify designs with parameters 2-(59, 29, 14) having an automorphism group of order 29 and one fixed point and show that there are exactly 531 such designs. ...

Verallgemeinerungen von Transitivit�tsklassen endlicher projektiver Ebenen
  • Citing Article
  • December 1958

Mathematische Zeitschrift