Patrick Pérez's research while affiliated with Valeo and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (313)
This survey reviews explainability methods for vision-based self-driving systems trained with behavior cloning. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from several research fields, namely computer vision, deep learning, autonomous...
A major paradigm for learning image representations in a self-supervised manner is to learn a model that is invariant to some predefined image transformations (cropping, blurring, color jittering, etc.), while regularizing the embedding distribution to avoid learning a degenerate solution. Our first contribution is to propose a general kernel frame...
Object detectors trained with weak annotations are affordable alternatives to fully-supervised counterparts. However, there is still a significant performance gap between them. We propose to narrow this gap by fine-tuning a base pre-trained weakly-supervised detector with a few fully-annotated samples automatically selected from the training set us...
Automatic pseudo-labeling is a powerful tool to tap into large amounts of sequential unlabeled data. It is especially appealing in safety-critical applications of autonomous driving where performance requirements are extreme, datasets large, and manual labeling is very challenging. We propose to leverage the sequentiality of the captures to boost t...
Recent works in autonomous driving have widely adopted the bird's-eye-view (BEV) semantic map as an intermediate representation of the world. Online prediction of these BEV maps involves non-trivial operations such as multi-camera data extraction as well as fusion and projection into a common top-view grid. This is usually done with error-prone geo...
Marker-less monocular 3D human motion capture (MoCap) with scene interactions is a challenging research topic relevant for extended reality, robotics and virtual avatar generation. Due to the inherent depth ambiguity of monocular settings, 3D motions captured with existing methods often contain severe artefacts such as incorrect body-scene inter-pe...
Unsupervised Domain Adaptation (UDA) is a transfer learning task which aims at training on an unlabeled target domain by leveraging a labeled source domain. Beyond the traditional scope of UDA with a single source domain and a single target domain, real-world perception systems face a variety of scenarios to handle, from varying lighting conditions...
This work investigates learning pixel-wise semantic image segmentation in urban scenes without any manual annotation, just from the raw non-curated data collected by cars which, equipped with cameras and LiDAR sensors, drive around a city. Our contributions are threefold. First, we propose a novel method for cross-modal unsupervised learning of sem...
Domain adaptation is an important task to enable learning when labels are scarce. While most works focus only on the image modality, there are many important multi-modal datasets. In order to leverage multi-modality for domain adaptation, we propose cross-modal learning, where we enforce consistency between the predictions of two modalities via mut...
Normalization Layers (NLs) are widely used in modern deep-learning architectures. Despite their apparent simplicity, their effect on optimization is not yet fully understood. This paper introduces a spherical framework to study the optimization of neural networks with NLs from a geometric perspective. Concretely, the radial invariance of groups of...
With their robustness to adverse weather conditions and ability to measure speeds, radar sensors have been part of the automotive landscape for more than two decades. Recent progress toward High Definition (HD) Imaging radar has driven the angular resolution below the degree, thus approaching laser scanning performance. However, the amount of data...
With the rapid advances in generative adversarial networks (GANs), the visual quality of synthesised scenes keeps improving, including for complex urban scenes with applications to automated driving. We address in this work a continual scene generation setup in which GANs are trained on a stream of distinct domains; ideally, the learned models shou...
As deep learning models are increasingly used in safety-critical applications, explainability and trustworthiness become major concerns. For simple images, such as low-resolution face portraits, synthesizing visual counterfactual explanations has recently been proposed as a way to uncover the decision mechanisms of a trained classification model. I...
In this era of active development of autonomous vehicles, it becomes crucial to provide driving systems with the capacity to explain their decisions. In this work, we focus on generating high-level driving explanations as the vehicle drives. We present BEEF, for BEhavior Explanation with Fusion, a deep architecture which explains the behavior of a...
Localizing objects in image collections without supervision can help to avoid expensive annotation campaigns. We propose a simple approach to this problem, that leverages the activation features of a vision transformer pre-trained in a self-supervised manner. Our method, LOST, does not require any external object proposal nor any exploration of the...
Learning-based trajectory prediction models have encountered great success, with the promise of leveraging contextual information in addition to motion history. Yet, we find that state-of-the-art forecasting methods tend to overly rely on the agent's dynamics, failing to exploit the semantic cues provided at its input. To alleviate this issue, we i...
Vision-based depth estimation is a key feature in autonomous systems, which often relies on a single camera or several independent ones. In such a monocular setup, dense depth is obtained with either additional input from one or several expensive LiDARs, e.g., with 64 beams, or camera-only methods, which suffer from scale-ambiguity and infinite-dep...
Pedestrians are arguably one of the most safety-critical road users to consider for autonomous vehicles in urban areas. In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes from a single image. These encompass visual appearance and behavior, and also include the forecasting of road crossing...
In this work, we address the task of unsupervised domain adaptation (UDA) for semantic segmentation in presence of multiple target domains: The objective is to train a single model that can handle all these domains at test time. Such a multi-target adaptation is crucial for a variety of scenarios that real-world autonomous systems must handle. It i...
We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which we dub "physionical", is aware of physical and environmental constraints. It combines in a fully-di...
In this work, we define and address a novel domain adaptation (DA) problem in semantic scene segmentation, where the target domain not only exhibits a data distribution shift w.r.t. the source domain, but also includes novel classes that do not exist in the latter. Different to “open-set” (Panareda Busto and Gall, 2017) and “universal domain adapta...
Existing approaches to unsupervised object discovery (UOD) do not scale up to large datasets without approximations which compromise their performance. We propose a novel formulation of UOD as a ranking problem, amenable to the arsenal of distributed methods available for eigenvalue problems and link analysis. Extensive experiments with COCO and Op...
Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP offers better properties for confidence estimation...
Despite the recent progress of generative adversarial networks (GANs) at synthesizing photo-realistic images, producing complex urban scenes remains a challenging problem. Previous works break down scene generation into two consecutive phases: unconditional semantic layout synthesis and image synthesis conditioned on layouts. In this work, we propo...
We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which we dub physionical, is aware of physical and environmental constraints. It combines in a fully diff...
Understanding the scene around the ego-vehicle is key to assisted and autonomous driving. Nowadays, this is mostly conducted using cameras and laser scanners, despite their reduced performances in adverse weather conditions. Automotive radars are low-cost active sensors that measure properties of surrounding objects, including their relative speed,...
Deep Neural Networks (DNNs) are a critical component for self-driving vehicles. They achieve impressive performance by reaping information from high amounts of labeled data. Yet, the full complexity of the real world cannot be encapsulated in the training data, no matter how big the dataset, and DNNs can hardly generalize to unseen conditions. Robu...
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods...
Domain adaptation is an important task to enable learning when labels are scarce. While most works focus only on the image modality, there are many important multi-modal datasets. In order to leverage multi-modality for domain adaptation, we propose cross-modal learning, where we enforce consistency between the predictions of two modalities via mut...
This survey reviews explainability methods for vision-based self-driving systems. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from several research fields, namely computer vision, deep learning, autonomous driving, explainable AI (X-AI)...
Learning image representations without human supervision is an important and active research field. Several recent approaches have successfully leveraged the idea of making such a representation invariant under different types of perturbations, especially via contrastive-based instance discrimination training. Although effective visual representati...
Existing datasets for training pedestrian detectors in images suffer from limited appearance and pose variation. The most challenging scenarios are rarely included because they are too difficult to capture due to safety reasons, or they are very unlikely to happen. The strict safety requirements in assisted and autonomous driving applications call...
Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP offers better properties for confidence estimation...
In this era of active development of autonomous vehicles, it becomes crucial to provide driving systems with the capacity to explain their decisions. In this work, we focus on generating high-level driving explanations as the vehicle drives. We present BEEF, for BEhavior Explanation with Fusion, a deep architecture which explains the behavior of a...
Pedestrians are arguably one of the most safety-critical road users to consider for autonomous vehicles in urban areas. In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes. These encompass visual appearance and behavior, and also include the forecasting of road crossing, which is a main sa...
Knowledge distillation refers to the process of training a student network to achieve better accuracy by learning from a pre-trained teacher network. Most of the existing knowledge distillation methods direct the student to follow the teacher by matching the teacher’s output, feature maps or their distribution. In this work, we propose a novel way...
This paper addresses the problem of discovering the objects present in a collection of images without any supervision. We build on the optimization approach of Vo et al. [34] with several key novelties: (1) We propose a novel saliency-based region proposal algorithm that achieves significantly higher overlap with ground-truth objects than other com...
Editing of portrait images is a very popular and important research topic with a large variety of applications. For ease of use, control should be provided via a semantically meaningful parameterization that is akin to computer animation controls. The vast majority of existing techniques do not provide such intuitive and fine-grained control, or on...
Advanced perception and path planning are at the core for any self-driving vehicle. Autonomous vehicles need to understand the scene and intentions of other road users for safe motion planning. For urban use cases it is very important to perceive and predict the intentions of pedestrians, cyclists, scooters, etc., classified as vulnerable road user...
This paper addresses the problem of discovering the objects present in a collection of images without any supervision. We build on the optimization approach of Vo {\em et al.}~\cite{Vo2019UnsupOptim} with several key novelties: (1) We propose a novel saliency-based region proposal algorithm that achieves significantly higher overlap with ground-tru...
The state of the art performance of deep learning models comes at a high cost for companies and institutions, due to the tedious data collection and the heavy processing requirements. Recently, Uchida et al. (2017) proposed to watermark convolutional neural networks by embedding information into their weights. While this is a clear progress towards...
Batch Normalization (BN) is a prominent deep learning technique. In spite of its apparent simplicity, its implications over optimization are yet to be fully understood. In this paper, we study the optimization of neural networks with BN layers from a geometric perspective. We leverage the radial invariance of groups of parameters, such as neurons f...
While fully-supervised deep learning yields good models for urban scene semantic segmentation, these models struggle to generalize to new environments with different lighting or weather conditions for instance. In addition, producing the extensive pixel-level annotations that the task requires comes at a great cost. Unsupervised domain adaptation (...
We address the problem of style transfer between two photos and propose a new way to preserve photorealism. Using the single pair of photos available as input, we train a pair of deep convolution networks (convnets), each of which transfers the style of one photo to the other. To enforce photorealism, we introduce a content preserving mechanism by...
Image completion is the problem of generating whole images from fragments only. It encompasses inpainting (generating a patch given its surrounding), reverse inpainting/extrapolation (generating the periphery given the central patch) as well as colorization (generating one or several channels given other ones). In this paper, we employ a deep netwo...
In this work, we define and address "Boundless Unsupervised Domain Adaptation" (BUDA), a novel problem in semantic segmentation. BUDA set-up pictures a realistic scenario where unsupervised target domain not only exhibits a data distribution shift w.r.t. supervised source domain but also includes classes that are absent from the latter. Different t...
StyleGAN generates photorealistic portrait images of faces with eyes, teeth, hair and context (neck, shoulders, background), but lacks a rig-like control over semantic face parameters that are interpretable in 3D, such as face pose, expressions, and scene illumination. Three-dimensional morphable face models (3DMMs) on the other hand offer control...
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data. Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions that encode discrete visual concepts, here called visual words. To build such discrete r...
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms, provides a taxonomy of automated driving tasks where (D)RL methods ha...
Advanced perception and path planning are at the core for any self-driving vehicle. Autonomous vehicles need to understand the scene and intentions of other road users for safe motion planning. For urban use cases it is very important to perceive and predict the intentions of pedestrians, cyclists, scooters, etc., classified as vulnerable road user...
We consider the problem of identifying people on the basis of their walk (gait) pattern. Classical approaches to tackle this problem are based on, e.g., video recordings or piezoelectric sensors embedded in the floor. In this work, we rely on acoustic and vibration measurements, obtained from a microphone and a geophone sensor, respectively. The co...
Audio-visual (AV) representation learning is an important task from the perspective of designing machines with the ability to understand complex events. To this end, we propose a novel multimodal framework that instantiates multiple instance learning. Specifically, we develop methods that identify events and localize corresponding AV cues in uncons...
Knowledge distillation refers to the process of training a compact student network to achieve better accuracy by learning from a high capacity teacher network. Most of the existing knowledge distillation methods direct the student to follow the teacher by matching the teacher's output, feature maps or their distribution. In this work, we propose a...
Unsupervised Domain Adaptation (UDA) is crucial to tackle the lack of annotations in a new domain. There are many multi-modal datasets, but most UDA approaches are uni-modal. In this work, we explore how to learn from multi-modality and propose cross-modal UDA (xMUDA) where we assume the presence of 2D images and 3D point clouds for 3D semantic seg...
Current generative networks are increasingly proficient in generating high-resolution realistic images. These generative networks, especially the conditional ones, can potentially become a great tool for providing new image datasets. This naturally brings the question: Can we train a classifier only on the generated data? This potential availabilit...
Assessing reliably the confidence of a deep neural network and predicting its failures is of primary importance for the practical deployment of these models. In this paper, we propose a new target criterion for model confidence, corresponding to the True Class Probability (TCP). We show how using the TCP is more suited than relying on the classic M...