Pamela Habibovic's research while affiliated with Maastricht University and other places

Publications (163)

Article
Full-text available
Calcium phosphates (CaP) are widely used synthetic bone graft substitutes, having bioactivity that is regulated by a set of intertwined physico-chemical and structural properties. While some CaPs have shown to be as effective in regenerating large bone defects as autologous bone, there is still the need to understand the role of individual material...
Article
Full-text available
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If we assume the biochemical signals to be one side of the coin, the other side comprises biophysical cues. Ther...
Article
Full-text available
In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell–material interactions th...
Article
Full-text available
A comparatively straightforward approach to accomplish more physiological realism in organ-on-a-chip (OoC) models is through substrate geometry. There is increasing evidence that the strongly, microscale curved surfaces that epithelial or endothelial cells experience when lining small body lumens, such as the alveoli or blood vessels, impact their...
Article
Organs-on-chips (OoCs) are systems containing engineered or natural miniature tissues grown inside microfluidic chips. To better mimic human physiology, the chips are designed to control cell microenvironments and maintain tissue-specific functions. Combining advances in tissue engineering and microfabrication, OoCs have gained interest as a next-g...
Article
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such s...
Article
Full-text available
The inner surface of the intestine is a dynamic system, composed of a single layer of polarized epithelial cells. The development of intestinal organoids was a major breakthrough since they robustly recapitulate intestinal architecture, regional specification and cell composition in vitro. However, the cyst-like organization hinders direct access t...
Article
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a susta...
Article
Full-text available
Stem cell (SC)-based therapies hold the potential to revolutionize therapeutics by enhancing the body's natural repair processes. Currently, there are only three SC therapies with marketing authorization within the European Union. To optimize outcomes, it is important to understand the biodistribution and behavior of transplanted SCs in vivo. A var...
Article
Full-text available
Smart biomaterials, featuring not only bioactivity, but also dynamic responsiveness to external stimuli, are desired for biomedical applications, such as regenerative medicine, and hold great potential to expand the boundaries of the modern clinical practice. Herein, a magnetically responsive three-dimensional scaffold with sandwich structure is de...
Article
For over a decade, organoids mimicking the development, physiology, and disease of the digestive system have been a topic of broad interest and intense study. Establishing organoid models that recapitulate all distinct regions of the gastrointestinal tract (GIT) has proven challenging since each tissue surrogate requires tailor-made modifications o...
Article
Full-text available
Embryogenic developmental processes involve a tightly controlled regulation between mechanical forces and biochemical cues such as growth factors, matrix proteins, and cytokines. This interplay remains essential in the mature body, with aberrant pathway signaling leading to abnormalities such as atherosclerosis in the cardiovascular system, inflamm...
Article
Full-text available
A limiting factor in large bone defect regeneration is the slow and disorganized formation of a functional vascular network in the defect area, often resulting in delayed healing or implant failure. To overcome this, strategies that induce angiogenic processes should be combined with potent bone graft substitutes in new bone regeneration approaches...
Article
Organ-on-chip models, developed using microengineering and microfluidic technologies, aim to recreate physiological-like microenvironments of organs or tissues as a tool to study (patho)physiological processes in vitro. On-chip models of bone are relevant for the study of bone physiology, diseases and regenerative processes. While a few bone-on-a-c...
Article
Full-text available
Background Biomineralized collagen, consisting of fibrillar type-I collagen with embedded hydroxyapatite mineral, is a bone-mimicking material with potential application as a bone graft substitute. Despite the chemical and structural similarity with bone extracellular matrix, no evidence exists so far that biomineralized collagen can be resorbed by...
Article
Full-text available
The distinct structural properties and osteogenic capacity are important aspects to be taken into account when developing guided bone regeneration membranes. Herein, inspired by the structure and function of natural periosteum, we designed and fabricated using electrospinning a fibrous membrane comprising (poly)-ε-caprolactone (PCL), collagen-I (Co...
Article
Full-text available
Ceramic (nano)materials are promising materials for bone regeneration applications. The addition of bioinorganics such as strontium and zinc is a popular approach to further improve their biological performance. However, control over ion delivery is important to prevent off-target effects. Mesoporous silica nanoparticles (MSNs) are popular nanomate...
Article
Full-text available
Natural bone is a complex composite, consisting predominantly of collagen and hydroxyapatite (HA), which form a highly organized, hierarchical structure from the nano- to the macroscale. Because of its biphasic, anisotropic, ultrafine structural design, bone tissue possesses excellent mechanical properties. Herein, inspired by the composition and m...
Article
Full-text available
Biodegradable porous calcium phosphate (CaP) ceramics are widely used as synthetic graft substitutes for bone regeneration, owing to their chemical and structural similarity to bone and associated bioactivity in terms of bone‐bonding, osteoconductive, and even osteoinductive properties. Nevertheless, the intrinsic brittleness and poor processabilit...
Article
Full-text available
Mesoporous bioactive glasses (MBGs) are promising materials for regenerative medicine, due to their favorable properties including bioactivity and degradability. These key properties, but also their surface area, pore structure and pore volume are strongly dependent on synthesis parameters and glass stoichiometry. However, to date no systematic stu...
Article
Full-text available
Biomineralized collagen composite materials pose an intriguing alternative to current synthetic bone graft substitutes by offering a biomimetic composition that closely resembles native bone. We hypothesize that this composite can undergo cellular resorption and remodeling similar to natural bone. We investigate the formation and activity of human...
Article
Full-text available
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compo...
Article
Affordable and therapeutically effective biomaterials are required for successful treatment of orthopaedic critical-size bone defects. Calcium phosphate (CaP) ceramics are widely used for bone repair and regeneration, however, further optimization of their properties and biological performance is still required. To improve the existing CaP bone gra...
Article
Full-text available
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional appro...
Article
3D Ti6Al4V - beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V pow...
Article
Full-text available
Deposition of minerals, particularly calcium phosphates such as hydroxyapatite, is an important process in the formation of hard tissues such as bone. Here, a new, affordable, straightforward and non‐destructive method based on complex capacitance spectroscopy, an application of electrical impedance spectroscopy, is described which allows repeated...
Preprint
Full-text available
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of highly loaded polymer-calcium phosphate (CaP) composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such...
Article
Self-healing hydrogels have emerged as promising biomaterials in regenerative medicine applications. However, an ongoing challenge is to create hydrogels that combine rapid self-healing with high mechanical strength to make them applicable to a wider range of organs/tissues. Incorporating nanoparticles within hydrogels is a popular strategy to impr...
Article
Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studie...
Preprint
Full-text available
Background: Biomineralized collagen, consisting of fibrillary type-I collagen with embedded hydroxyapatite mineral, is a bone-mimicking material with potential application as a bone graft substitute. Despite the chemical and structural similarity with bone extracellular matrix, no evidence exists so far that biomineralized collagen can be resorbed...
Article
Full-text available
Biomineralized collagen with intrafibrillar calcium phosphate mineral provides an excellent mimic of the composition and structure of the extracellular matrix of bone, from nano- to micro-scale. Scaffolds prepared from this material have the potential to become the next-generation of synthetic bone graft substitutes, as their unique properties make...
Article
In article number 2000126, Stefan Giselbrecht and co‐workers present a novel method to culture intestinal organoids inside polymer film‐based microwell arrays under matrix‐free conditions. This platform promotes the controlled and more homogeneous culture of organoids for extended periods and facilitates in situ monitoring and high quality imaging.
Article
Full-text available
A programmable droplet-based microfluidic serial dilutor platform is presented, which is capable of generating a series of droplets with the scalable stepwise concentration gradient of a sample. Sequential dilution of a target molecule was automatically performed in sub-nanoliter scale droplets by synchronizing a microfluidic peristaltic mixer and...
Article
Full-text available
As organoids offer a promising tool to study cell biology and model diseases, organoid technology has rapidly evolved over the last few years. Even though intestinal organoids are one of the most well‐established organoid systems, they currently rely on the embedding into an excess amount of poorly defined, tumor‐derived extracellular matrix. Here,...
Article
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, ye...
Article
Full-text available
In recent years, synthetic calcium phosphate (CaP) ceramics have emerged as an alternative to bone grafts in the treatment of large critical-sized bone defects. In order to successfully substitute for bone grafts, materials must be osteoinductive-that is, they must induce osteogenic differentiation and subsequent bone formation in vivo. While a set...
Article
Full-text available
This paper describes an innovative yet straightforward fabrication technique to create three-dimensional (3D) microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after th...
Article
Full-text available
A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagen...
Preprint
Full-text available
Electrospun (ESP) scaffolds are a promising type of tissue engineering constructs for large defects with limited depth. To form new functional tissue, the scaffolds need to be infiltrated with cells, which will deposit extracellular matrix. However, due to dense fiber packing and small pores, cell and tissue infiltration of ESP scaffolds is limited...
Article
Guest editors Pamela Habibovic, Sandra Hofmann and Jeroen van den Beucken introduce this themed collection on behalf of the European Society for Biomaterials, showcasing research presented at the 29th Annual Meeting of the European Society for Biomaterials, Maastricht, 2018.
Article
The development of smart interfaces that can guide tissue formation is of great importance in the field of regenerative medicine. Nanoparticles represent an interesting class of materials that can be used to enhance regenerative treatments by enabling close control over surface properties and directing cellular responses. Moreover, nanoparticles ca...
Article
Full-text available
Awareness that traditional two-dimensional (2D) in vitro and nonrepresentative animal models may not completely emulate the 3D hierarchical complexity of tissues and organs is on the rise. Therefore, posterior translation into successful clinical application is compromised. To address this dearth, on-chip biomimetic microenvironments powered by mic...
Conference Paper
Statement of Purpose: Colorectal cancer is the third most common cancer and its incidence increases with ageing. Understanding the mechanisms of tumour growth rely in further advances to unveil cancer-causing agents, drug screening and in the development of personalized therapies. Standard 2D in vitro models and in vivo animal models have undoubted...
Article
In the past decade, calcium phosphate (CaP) ceramics have emerged as alternatives to autologous bone grafts for the treatment of large, critical-sized bone defects. In order to be effective in the regeneration of such defects, ceramics must show osteoinductive behaviour, defined as the ability to induce de novo heterotopic bone formation. While a s...
Article
Objective: Cranioplasty is indicated to restore form and function of bone defects of the neurocranium. Autografts are the gold standard, alloplastic materials are used when autologous bone is unavailable or unsuitable, and increasing evidence supports the use of patient-specific implants (PSIs) for reconstruction. We reviewed our own patient data...
Article
Full-text available
Background: Nanoparticles have emerged as promising cell-labeling tools, as they can be precisely tailored in terms of chemical and physical properties. Mesoporous silica nanoparticles (MSNs), in particular, are easily tunable with regard to surface and core chemistry, and are able to confine dyes and drug molecules efficiently. Purpose: The aim o...
Article
Synthetic substitutes of bone grafts, such as calcium phosphate–based ceramics, have shown some good clinical successes in the regeneration of large bone defects and are currently extensively used. In the past decade, the field of biomineralization has delivered important new fundamental knowledge and techniques to better understand this fascinatin...
Poster
Full-text available
Starting from phase-contrast nano-computed tomography (nanoCT) scans of natural trabecular bone, a 3D model was developed and optimized to allow additive manufacturing. Using a direct-writing nanofabrication method, replicas in polymer of the bone structure were produced. In order to provide the replicas with surface chemistry similar to that of bo...
Conference Paper
Full-text available
Affordable and therapeutically effective biomaterials are required for successful treatment of orthopaedic critical-size bone defects. Calcium phosphate (CaP) ceramics are widely used for bone repair and regeneration, but there is still much room for improvement when it comes to their properties and biological performance. To improve the existing C...
Article
The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ...
Article
Full-text available
In the field of orthopaedic surgery, bacterial invasion of implants and the resulting periprosthetic infections are a common and unresolved problem. Antimicrobial susceptibility testing methods help to define the optimal treatment and identify antimicrobial resistance. This review discusses proven gold-standard techniques and recently developed mod...
Article
Full-text available
Background Bioinorganics have been explored as additives to ceramic bone graft substitutes with the aim to improve their performance in repair and regeneration of large bone defects. Silicon (Si), an essential trace element involved in the processes related to bone formation and remodeling, was shown not only to enhance osteoblasts proliferation bu...
Conference Paper
Affordable and therapeutically effective biomaterials are required for successful treatment of orthopaedic critical-size bone defects. Calcium phosphate (CaP) ceramics are widely used biomaterials for bone repair and regeneration . Nevertheless, continuing research efforts are needed to obtain a better control over the properties of CaPs and...
Article
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight in the interactions occurrin...
Article
Strategic Directions in Biomimetics and Osteoinduction.
Article
Full-text available
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be e...
Article
Micro- and nanoscale topographical structuring of biomaterial surfaces has been a valuable tool for influencing cell behavior, including cell attachment, proliferation and differentiation. However, most fabrication techniques for surface patterning of implantable biomaterials suffer from a limited resolution, not allowing controlled generation of s...
Conference Paper
Full-text available
For successfultreatment of orthopaedic critical-size bone defects, affordable and therapeutically effective biomaterials are required. Calcium phosphate (CaP) ceramics are widely used for bone repair and regeneration, but there is still much room for improvement when it comes to their properties and biological performance. To improve the existing C...