September 2000
·
127 Reads
·
10 Citations
We present a decision-tree based procedure to quantize the feature-space of a speech recognizer, with the motivation of reducing the computation time required for evaluating gaussians in a speech recognition system. The entire feature space is quantized into non overlapping regions where each region is bounded by a number of hyperplanes. Further, each region is characterized by the occurence of only a small number of the total alphabet of allophones (sub-phonetic speech units); by identifying the region in which a test feature vector lies, only the gaussians that model the density of allophones that exist in that region need be evaluated. The quantization of the feature space is done in a heirarchical manner using a binary decision tree. Each node of the decision tree represents a region of the feature space, and is further characterized by a hyperplane (a vector v n and a scalar threshold value hn ), that subdivides the region corresponding to the current node into two non-overlapping...