Noemi Onofa’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Pedestrian Detection Under Partial Occlusion by using Logic Inference, HOG and SVM
  • Article

September 2019

·

27 Reads

·

20 Citations

IEEE Latin America Transactions

·

·

·

[...]

·

Brayan Quinga

This article presents an algorithm for the detection of pedestrians in urban driving environments during the day. The main contribution is in the design of a new classifier to discriminate between the person and the background, under partial occlusion. To construct the classifier, the HOG (Histogram of Oriented Gradients) descriptor was used together with the SVM (Support Vector Machine) and IL (Logic Inference) algorithms.The input image has been divided into twelve regions, and for each of them the feature vector has been extracted and a classifier based on SVM has been built. With this design it is possible to capture the specific detail of each part of the human body, such as head, legs, arms and body. Subsequently, they have been joined in a final classifier using IL, in order to obtain an efficient algorithm to discriminate between partially occluded pedestrians and the background, in urban environments during the day. The experiments related to the classifier were developed onseveral public databases, in various degrees of partial occlusion; and the experiments linked to the detection were generated on the visual information obtained by the experimental platform ViiA, to validate the proposal under real driving conditions.


Figura 6. Generación de ventanas aleatorias por escala en cada SOI. En la parte superior el hiperplano original y en la fila inferior el hiperplano escalado [20].  Filtros de gradiente y de simetría: En esta fase se obtienen las ventanas con mayor potencial a ser peatón, analizando los gradientes y la simetría de cada ventana. En la primera presunción se asume que, sobre la figura humana, el gradiente vertical es mayor que de gradiente horizontal. En Figura 7 se observan varios ejemplos donde se confirma esta hipótesis.
Generación de regiones de interés con potencial de contener peatones mediante búsqueda focalizada usando visión monocular
  • Article
  • Full-text available

March 2019

·

24 Reads

CienciAmérica

Este artículo presenta el desarrollo de un algoritmo para la generación de regiones de interés con alto potencial de contener peatones sobre imágenes monoculares. Para la generación de estas regiones se ha construido un algoritmo de generación de hiperplanos de búsqueda en función de la carretera junto con la generación de ventanas aleatorias, sobre ésta zona con una variación de la técnica desplazamiento de ventana piramidal; luego se realiza el pre-procesamiento usando los filtros de gradientes vertical y horizontal. Para comprobar que la región es un posible peatón, se parte de dos hipótesis respecto a la figura humana, la componente vertical es mayor que la horizontal y la fuerte simetría vertical. Mediante este proceso se obtiene un conjunto reducido y óptimo de regiones en el intervalo de entre 2 y 25 metros al frente de la cámara. Los resultados experimentales, desarrollados sobre las bases de datos presentes en el estado del arte, muestran que se tiene una tasa del 91% de ventanas válidas con respecto al total de ventanas verdaderas, a 25.38 fotogramas por segundo.

Download

Citations (1)


... To address these challenges, several methods have been proposed in the literature. Flores Calero et al. [23] presented a Histogram of Oriented Gradients (HOG)-based classifier together with Support Vector Machine (SVM) and Inference Logic (IL) algorithms to discriminate between the person to be detected and the background. They built an alternative dataset to make the experiment more realistic, hiding certain image parts at different percentages of synthetic occlusion (0, 10, 20, 30, and 40 percent). ...

Reference:

Detection of Pedestrians in Reverse Camera Using Multimodal Convolutional Neural Networks
Pedestrian Detection Under Partial Occlusion by using Logic Inference, HOG and SVM
  • Citing Article
  • September 2019

IEEE Latin America Transactions