Niken Dwi Wahyu Cahyani’s research while affiliated with Telkom University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (7)


Gambar 2. Arsitektur Solusi Sistem
Gambar 25. CPU Usage
Recuva
Metode Wiping Data Zero Overwrite pada setiap Tools
Metode Wiping Data Random Data Overwrite pada setiap Tools

+2

Testing Tools Data Wiping dalam Kegiatan Anti Forensik
  • Article
  • Full-text available

September 2023

·

124 Reads

LOGIC Jurnal Penelitian Informatika

Ryan Austin Andika

·

Niken Dwi Wahyu Cahyani

·

Salah satu kegiatan anti forensik untuk mengamankan data adalah dengan melakukan penghapusan data dari media penyimpanan, yang dapat membuat para penegak hukum kesulitan untuk mengumpulkan bukti-bukti digital. Pada praktik nya ada banyak metode yang dapat membuat penghapusan data tersebut benar-benar aman dan tidak mudah untuk dipulihkan dengan berbagai tools recovery, salah satunya adalah dengan wiping data. Metode penghapusan dengan teknik wiping data, dalam kegiatan anti forensik biasanya digunakan pada media penyimpanan yang menyimpan data ilegal yang berkaitan dengan bukti tindak kejahatan. Jika pada media penyimpanan ini berisi data tindak kejahatan maka pemilik data tersebut akan berusaha untuk melakukan menyembunyikan atau menghapus data tersebut, salah satunya dengan metode wiping data, selain data utama ada juga data lain yang akan terhapus dalam perangkat penyimpanan jika menggunakan metode wiping data, yang mencakup metadata dan tracedata. Dalam upaya membantu kegiatan forensic memahami tools wiping data, pada pengujian tugas akhir ini akan diambil enam tools atau aplikasi sampel yang telah dipilih sebelumnya yang dapat melakukan data wiping pada media penyimpanan, dengan tujuan untuk membandingkan hasil data wiping antara tools atau aplikasi tersebut lalu dianalisa kelebihan dan kekurangannya untuk keperluan sebagai data untuk kegiatan forensic. Metode yang diambil pada sampel tools atau aplikasi adalah metode-metode Zero Overwrite, Random Data Overwrite, U.S. DoD 5220.22-M (E), U.S. DoD 5220.22-M (ECE), dan Bruce Schneier's Algorithm. Metode-metode ini dapat menghapus dan menimpa data sehingga data tidak dapat dibaca oleh orang yang tidak berwenang, sehingga dapat dipakai untuk mencegah pengungkapan kejahatan

Download






Citations (5)


... Other research efforts have focused on classifying aerial images of large areas to identify potentially dangerous situations, using CNNs trained on collections of images of offensive situations [11]. The security of communications between ground control and RPAs has also been studied, with some research exploring the use of NTRU encryption to secure transmissions between them [12]. ...

Reference:

BLE-based secure tracking system proposal
Quantum Resistance Deep Learning based Drone Surveillance System
  • Citing Conference Paper
  • September 2021

... Moreover, the application of building prediction models is becoming increasingly popular. Machine learning and traditional time series models, including linear regression [40][41][42], logistic regression [43,44], Bayesian regression [45,46], artificial neural networks [47][48][49], deep learning [16,50], linear models [51][52][53] and hybrid models [54], have demonstrated their significance in cryptocurrency prices and other fields of data analysis. Therefore, this study employs three deep learning algorithms, namely LSTM, Bi-LSTM, and GRU, to handle time series data for predictive modeling. ...

Ransomware Detection on Bitcoin Transactions Using Artificial Neural Network Methods
  • Citing Conference Paper
  • August 2021

... In the last few years, ML methods to detect botnets [11], such as Naive Bayes [12], SVM [13], random forests [14], and clustering methods [15]. Beny Nugraha et al. [16] proposed deep learning models, LSTM and MLP for detecting botnet traffic patterns. ...

Performance Analysis of Decision Tree C4.5 as a Classification Technique to Conduct Network Forensics for Botnet Activities in Internet of Things
  • Citing Conference Paper
  • August 2020

... This approach could be a suitable alternative for edge devices since KEMs use smaller data sizes. The later work [19] compares this solution with traditional TLS on devices Regarding other protocols different from TLS that are also interesting within the IoT domain, the NTRU cryptosystem is implemented as a public-key encryption algorithm for message queues telemetry transport (MQTT) in [20]. Although the results derived from this work conclude that such a postquantum version of MQTT is a good candidate for IoT applications, the study is restricted to one KEM only, and the tests are run on Raspberry Pi boards, which are not representative of very resourceconstrained devices. ...

An Efficient Implementation of NTRU Encryption in Post-Quantum Internet of Things
  • Citing Conference Paper
  • October 2020

... For example, in [8], the authors present a model to provide diagnostics for security solutions based on the preprocessing of control plane event-oriented execution traces and data plane state transition graphs. Similarly, in [9], the authors propose a technical set of processes targeted for a forensic context within SDN. This approach includes the development of specific modules designed to retrieve controller logs. ...

An Evidence-Based Technical Process for OpenFlow-Based SDN Forensics
  • Citing Conference Paper
  • June 2020