Nicolas Bernard's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (4)
Among existing orbital propagation techniques, semi-analytical methods are of great interest: by separating the computation of long-term evolution from one side and the short-term variations from the other side, they tend to be significantly faster than classical numerical methods while keeping similar accuracy. The implementation of the Draper Sem...
Semi-analytical propagation techniques are of great interest, as they aim to combine the accuracy of numerical techniques with the speed of analytical methods. Amongst them, the Draper Semi-Analytical Satellite Theory (DSST) stands out, with its extensive treatment of perturbations, its
exibility and also its maturity. Unfortunately DSST was for l...
The goal of the Draper Semi-analytical Satellite Theory (DSST) Standalone Orbit Propagator is to provide the same algorithms as in the GTDS orbit determination system implementation of the DSST, without GTDS's overhead. However, this goal has not been achieved. The 1984 DSST Standalone included complete models for the mean element motion but trunca...
Citations
... It is an interesting tool for a fast and accurate orbit propagation, close to current needs. Its development started in the mid-1970s at the Computer Sciences Corporation of Maryland by a team led by Paul J. Cefola [5]. ...
... Therefore, under this simplified model, selecting = /2 or = 3 /2 is preferred for maximizing orbital capacity (this condition is also used when designing 2 / 3 frozen orbits). Equation 23 can be simplified by assuming = /2: ...
... The DSST Propagator was recently implemented in the open-source, Java library Orekit 1 and validated against the original Fortran implementation [9]. During the validation it was revealed that, while the integration of the mean elements was extremely fast (under 15 seconds for a one year interval) the generation of the short periodic values, necessary for the generation of the satellite real state took a lot more (in the range of minutes for the same interval). ...