May 2004
·
13 Reads
·
25 Citations
IEEE Transactions on Instrumentation and Measurement
This paper examines the output properties of static power-series nonlinearities driven by periodic multiharmonic signals with emphasis given to their effect on linear frequency response function (FRF) measurements. The analysis is based on the classification of nonlinear distortions into harmonic and interharmonic contributions. The properties of harmonic contributions are examined in detail and explicit formulae are derived, by which the number of harmonic contributions generated at the test frequencies can be calculated for odd-order nonlinearities up to, and including, the ninth order. Although an analytic solution for any odd-order nonlinearity is still under investigation, a heuristic methodology is developed that solves this problem. It is shown that the derived formulae provide a useful tool in the examination of the behavior of FRF measurements in the presence of nonlinear distortions. Based on these formulae, different approaches in classifying nonlinear distortions are then compared with respect to their suitability in assessing the influence of system nonlinearities on linear FRF measurements.