N. V. Loukachevitch’s research while affiliated with Lomonosov Moscow State University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (3)


Use of Bert Neural Network Models for Sentiment Analysis in Russian
  • Article

April 2021

·

62 Reads

·

2 Citations

Automatic Documentation and Mathematical Linguistics

·

N. V. Loukachevitch

The results of applying standard neural network architectures (CNN, LSTM, and BiLSTM) and the recent BERT models to previously labeled data for sentiment analysis in Russian are described. Two versions of the Russian-language BERT model (RuBERT) and different methods of its application to the problem of sentiment analysis are compared. The state-of-the-art results on the datasets were improved significantly.


Исследование моделей нейронных сетей типа BERT для анализа тональности текстов на русском языкеInvestigation of BERT-type neural network models for sentiment analysis of Russian texts

January 2021

·

99 Reads

Научно-техническая информация Серия 2 Информационные процессы и системы

Описываются результаты применения стандартных архитектур нейронных сетей (CNN, LSTM, BiLSTM) и недавно появившихся их моделей BERT на ранее размеченных данных для анализа тональности текстов на русском языке. Сравниваются два варианта русскоязычной модели BERT (RuBERT) и различные способы ее применения.


Quantitative characteristics of the RuSentiFrames entries
The distribution of RuSentiFrames text entries according to attitudes
The distribution of RuSentiFrames text entries according to effects on main participants
Agreement between different experts in creating and annotating frames
The most negative attitudes found in the 2017 news corpus

+1

Sentiment Frames For Attitude Extraction in Russian
  • Conference Paper
  • Full-text available

January 2020

·

11 Reads

·

5 Citations

Texts can convey several types of inter-related information concerning opinions and attitudes. Such information includes the author’s attitude towards mentioned entities, attitudes of the entities towards each other, positive and negative effects on the entities in the described situations. In this paper, we described the lexicon RuSentiFrames for Russian, where predicate words and expressions are collected and linked to so-called sentiment frames conveying several types of presupposed information on attitudes and effects. We applied the created frames in the task of extracting attitudes from a large news collection.

Download

Citations (2)


... Bert modelini uygulamak için, her model için algoritmanın mimarisini değiştirmek gerekli değildir [32]. Doğal dil işleme problemi ile ilgili 11 farklı güncel alan ve konuda test edilen Bert modeli, bu alanların birçoğunda tahmin puanlarını bir üst seviyeye çıkararak kendini kanıtlamayı başarmıştır [32,53]. Bert, önceden etiketlenmemiş büyük miktarda ham veri, maskeli sözcüklerin tahmini ve sonraki cümleyi bulma kullanılarak eğitilmektedir. ...

Reference:

Patent classification with pre-trained Bert model
Use of Bert Neural Network Models for Sentiment Analysis in Russian
  • Citing Article
  • April 2021

Automatic Documentation and Mathematical Linguistics

... В данной работе исследуется применение языковых моделей для извлечения оценочных отношений, предобученных на основе большого автоматического размеченного корпуса извлеченных оценочных отношений по методу опосредованного обучения. Подход основан на использовании лексикона RuSentiFrames [6], который содержит описание оценочных отношений между аргументами слов-предикатов русского языка. Таким образом, вклад настоящей работы следующий: ...

Sentiment Frames For Attitude Extraction in Russian