N. A. Zhura’s research while affiliated with P.N. Lebedev Physical Institute of the Russian Academy of Sciences and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (8)


Problem of the Riemann—Hilbert Type for a Hyperbolic System on the Plane
  • Article

June 2019

·

3 Reads

·

1 Citation

Differential Equations

N. A. Zhura

·

A. P. Soldatov

We study a boundary value problem of the Riemann-Hilbert type for strictly hyperbolic first-order systems with constant coefficients and without lower-order terms in bounded domains of a special shape on the plane. Sufficient conditions for the unique solvability of this problem in weighted function classes are obtained.


Dirichlet Type Problems for First Order Strictly Hyperbolic Systems with Constant Coefficients in a Two-Dimensional Domain
  • Article
  • Publisher preview available

March 2019

·

6 Reads

·

1 Citation

Journal of Mathematical Sciences

We consider a first order strictly hyperbolic system of four equations with constant coefficients in a bounded domain with piecewise boundary consisting of eight smooth noncharacteristic arcs. In this domain, we consider boundary value problems with two linear relations between components of the solution and show show that these problems are uniquely solvable under certain assumptions.

View access options

A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain

June 2017

·

23 Reads

·

11 Citations

Izvestiya Mathematics

We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth noncharacteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain. © 2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.


Краевая задача для гиперболической системы первого порядка в двумерной области

May 2017

·

105 Reads

·

2 Citations

Известия Российской академии наук Серия математическая

В работе рассматривается строго гиперболическая система первого порядка с постоянными коэффициентами, состоящая из трех уравнений, в ограниченной кусочно-гладкой области. Предполагается, что граница этой области составлена из шести гладких нехарактеристических дуг. В этой области ставится краевая задача по заданным попеременно на этих дугах одного или двух линейных соотношений искомого решения. Показано, что при некоторых дополнительных условиях на коэффициенты этих соотношений, границу области и характер поведения решения вблизи характеристик, проходящих через угловые точки области, эта задача однозначно разрешима. Библиография: 16 наименований.


On a Representation of the Solution of the Inverse Sturm-Liouville Problem on the Entire Line

August 2015

·

19 Reads

·

5 Citations

Differential Equations

We obtain sufficient conditions for the fundamental Faddeev–Marchenko theorem to be true. In addition, we derive a representation of the solution of the inverse Sturm–Liouville problem on the entire line on the basis of the solution of a boundary value problem for the Jost functions and the corresponding singular integral equation.




Citations (2)


... Such well-known mathematicians as A.V. Bitsadze [9], M.I. Višik and O.A. Ladyženskaya [10], V.A. Solonnikov [11], N.A. Zhura and A.P. Soldatov [12,13], A.P. Soldatov [14], A.B. Rasulov and A.P. Soldatov [15], and others were engaged in boundary value problems for solving systems of differential equations. The theory of boundary value problems for systems of elliptic differential equations turned out to be very promising for applications in mechanics and physics. ...

Reference:

Hilbert boundary value problem for generalized analytic functions with a singular line
Problem of the Riemann—Hilbert Type for a Hyperbolic System on the Plane
  • Citing Article
  • June 2019

Differential Equations

... In this domain, it is natural to state the problem where n 1 and n 2 linear combinations of solutions to the system are given on alternating arcs respectively, where n 1 + n 2 = 4. Thus, the following three cases can occur: n 1 = 0 (the Cauchy problem), n 1 = 1, and n 1 = 2. The first two cases can be treated in the same way as in [4]. The remaining case n 1 = n 2 = 2 corresponds to a Dirichlet type problem and is studied in this paper. ...

A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain
  • Citing Article
  • June 2017

Izvestiya Mathematics