Мостовщиков Андрей Владимирович (Andrey V. Mostovshchikov’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


СИНТЕЗ НИТРИДА НИОБИЯ В УСЛОВИЯХ ТЕПЛОВОГО ВЗРЫВА СМЕСЕЙ НАНОПОРОШКА АЛЮМИНИЯ С ПЕНТАОКСИДОМ НИОБИЯ
  • Article

April 2019

·

28 Reads

Bulletin of the Tomsk Polytechnic University Geo Assets Engineering

·

·

Роот Людмила Олеговна (Lyudmila O. Root

·

[...]

·

Атулиа Манурадж (Atulya Manuraj

Актуальность. Получение тугоплавких нитридов в воздухе в условиях теплового взрыва смесей нанопорошка алюминия с оксидами металлов представляет практический интерес для материаловедения и для теории реакционной способности воздуха при высоких температурах. Такой синтез является наименее энергозатратным и не требует сложного оборудования. Для протекания синтеза необходим только нагрев исходной шихты, затем процесс протекает самoпроизвольнo. Синтез нитридсодержащих продуктов в воздухе с использованием атмосферного азота при нормальных условиях представляет интерес для получения новых видов керамики, добавок в обрабатывающий инструмент, для дисперсного упрочнения полимерных и композиционных материалов. Цель исследования: экспериментально определить состав продуктов сгорания смесей нанопорошка алюминия с пентаоксидом ниобия в воздухе. Объект: порошок, содержащий нитрид ниобия, полученный при сжигании смеси нанопорошка алюминия с пентаоксидом ниобия в воздухе. Методы: рентгенофазовый анализ (дифрактометр Дифрей-401), дифференциальный термический анализ (термоанализатор SDT Q600, фирма Instrument). На основании результатов дифференциального термического анализа были рассчитаны четыре параметра активности смeсей: температура начала окисления (tн.о, °C), степень окисленности (α, %), максимальная скорость окисления (vmax, мг/мин), удельный тепловой эффект (ΔН, Дж/г). Рентгенофазовый анализ использовали для изучения фазового состава продуктов окисления. Результаты. Процесс горения смесей нанопорошка алюминия с пентаоксидом ниобия в воздухе протекал в две стадии с формированием нитрида ниобия Nb2N. Согласно рентгенофазовому анализу, выход нитрида ниобия в продукте сгорания смеси НП Al:Nb2O5=3:1 в мольном соотношении (при массе смесей НП Al:Nb2O5=2,64:1,36) достигал максимума и составлял 47 отн. %. Расчет изобарно-изотермического потенциала показал, что нитрид ниобия должен окисляться кислородом воздуха. Причиной стабилизации кристаллической фазы Nb2N является дезактивация кислорода воздуха излучением горящего нанопорошка алюминия.


О МЕХАНИЗМЕ ХИМИЧЕСКОГО СВЯЗЫВАНИЯ АЗОТА ВОЗДУХА В УСЛОВИЯХ ТЕПЛОВОГО ВЗРЫВА СМЕСЕЙ НАНОПОРОШКА АЛЮМИНИЯ С ОКСИДОМ ТАНТАЛА

December 2018

·

42 Reads

Bulletin of the Tomsk Polytechnic University Geo Assets Engineering

Актуальность исследования. Предлагаемая новая технология получения тугоплавких нитридов имеет ряд преимуществ: низкие энергозатраты, отсутствие необходимости в сложном оборудовании, для получения нитридов используется азот воздуха, процесс синтеза осуществляется при атмосферном давлении. Цель исследования: экспериментально определить составы продуктов сгорания смесей нанопорошка алюминия и пентаоксида тантала в воздухе и в жидком азоте. Объект: продукт синтеза нитрид тантала, полученный сжиганием в воздухе смеси нанопорошка алюминия с пентаоксидом тантала. Методы: рентгенофазовый анализ (дифрактометр Дифрей-401), дифференциальный термический анализ (ДТА) (термоанализатор SDT Q600, фирма Instrument). На основании результатов ДТА были рассчитаны четыре параметра активности смeсей: температура начала окисления (tн.о, °C), степень окисленности (α, %), максимальная скорость окисления (vmax, мг/мин), удельный тепловой эффект (ΔН, Дж/г). Рентгенофазовый анализ с использованием дифрактометра «Дифрей-401», излучение рентгеновской трубки FeKα =0,193 нм. Результаты. Определены параметры активности смесей нанопорошка алюминия с пентаоксидом тантала. Установлено, что температура начала окисления смесей равна или превышает 420 °С, т. е. смеси не пирофорны. Процесс горения, инициированный открытым пламенем, протекал в две стадии: при 600–900 и при 2200–2400 °С. Изучены продукты сгорания смесей нанопорошка алюминия с пентаоксидом тантала в воздухе и в жидком азоте. Впервые экспериментально показано, что при горении нанопорошка алюминия в воздухе алюминий восстанавливает пентаоксид тантала, который взаимодействует с азотом воздуха, образуя кристаллический нитрид тантала Ta2N. Максимальный выход нитрида тантала при сгорании в воздухе с образованием кристаллической фазы Ta2N составлял 54 отн. %. Согласно РФА, также впервые в продуктах сгорания в жидком азоте смеси нанопорошка алюминия с пентаоксидом тантала обнаружены кристаллические фазы α- и β-тантала. В то же время нитрид тантала не обнаружен в продуктах сгорания образца в жидком азоте. Стабилизация металлической фазы тантала при взаимодействии нанопорошка алюминия с пентаоксидом тантала в условиях теплового взрыва подтверждает ранее сформулированное предположение о механизме образования тугоплавких нитридов. На первой стадии алюминий восстанавливает тантал до металла, и в условиях теплового взрыва и дезактивации кислорода (нетеплового процесса перехода триплетного кислорода в синглетный) происходит взаимодействие восстановленного металла с азотом.