February 2025
·
7 Reads
This study presents a novel self-healing mechanism for porcelain ceramics using UV-curable resin to address the inherent brittleness of ceramic materials. A biomimetic double-layered structure was designed, consisting of a high-density outer layer for mechanical strength and a highly porous inner layer for resin storage. The porous layer, achieved through nylon microparticle addition and subsequent volatilization during sintering, reached a porosity of 67%. As confirmed by FT-IR spectroscopy and EDS analysis, UV-curable acrylic resin was successfully incorporated into the porous structure. Three-point bending tests demonstrated efficient healing with a recovery rate of 56% after 5 min of UV irradiation. Both cured resin weight and post-healing bending strength increased logarithmically with UV irradiation time. The bending strength after healing was strongly dependent on the cured resin weight and polymerization depth within the specimen, as evidenced by the correlation between increased polymerization area and higher bending strength. This approach offers a promising solution for developing more reliable and durable ceramic materials, which will be particularly beneficial for aerospace and medical applications where maintenance cost reduction and extended product life are crucial.