Minduli Wijayatunga's research while affiliated with University of Auckland and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (4)
Space debris have been becoming exceedingly dangerous over the years as the number of objects in orbit continues to rise. Active debris removal (ADR) missions have garnered significant attention as an effective way to mitigate this collision risk. This research focuses on developing a multi-ADR mission that utilizes controlled reentry and deorbitin...
This paper presents the solution approach developed by the team "theAntipodes" for the 11th Global Trajectory Optimization Competition (GTOC11). The approach consists of four main blocks: 1) mothership chain generation, 2) rendezvous table generation, 3) the dispatcher, and 4) the refinement. Blocks 1 and 3 are purely combinatorial optimization pro...
This paper presents the solution approach developed by the team “theAntipodes” for the 11th Global Trajectory Optimization Competition (GTOC11). The approach consists of four main blocks: (1) mothership chain generation, (2) rendezvous table generation, (3) the dispatcher, and (4) the refinement. Blocks 1 and 3 are purely combinatorial optimization...
This note develops easily applicable techniques that improve the convergence and reduce the computational time of indirect low thrust trajectory optimization when solving fuel- and time-optimal problems. For solving fuel optimal (FO) problems, a positive scaling factor -- $\Gamma_{TR}$ -- is introduced based on the energy optimal (EO) solution to e...