Miguel A. Montes-Morán’s research while affiliated with Carbon Science and Technology Institute and other places
What is this page?
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
Redox flow batteries are attractive systems for large‐scale energy storage due to their capability to uncouple energy and power but still need to make several improvements to reach full commercial scale. The need to search for better components, including electrode materials that allow the internal flow of electrolytes and have optimal electrochemical performance is a hot topic in the development of this kind of battery. The use of direct ink writing technology to engineer complex electrode materials both in the architecture and chemical composition opens a new field of research to optimize electrode performance. In this study, several formulations are prepared using graphite, multiwall carbon nanotubes, and two different Polyacrylonitrile (PAN)‐based short carbon fibers. Furthermore, a graphitizable binder is added to the formulation to help consolidate the printed object into a highly conductive (3000–8000 Sm⁻¹) and mechanically resistant carbon electrode after a moderate heat treatment (800 °C). The 3D electrodes are successfully tested in an all vanadium redox flow cell showing a competitive performance when compared to benchmark electrodes (graphite felts).
In addition to the inherent limitations of carbons to melt or flow, a vast majority of carbon precursors deforms during carbonisation, with stereolithography of thermoset resins being the preferred technology for 3D printing of carbons. An alternative is now presented with the possibility of using a melting-based technology, selective laser sintering (SLS), to fabricate 3D structures that withstand carbonisation. The key factor that makes this happen is whey powder, a natural, abundant and cheap by-product of the dairy industry. When heating the whey powder with a laser at 180–200 ºC for a few seconds, whey particles sinter, and 3D structures are obtained layer-by-layer. Carbonisation of the sintered whey structures brings about 3D porous carbons with excellent mechanical properties that preserve the SLS printed form albeit an isotropic shrinkage (approx. 23%). Melanoidins are identified as responsible for both the sintering and the thermoset behaviour during carbonisation of the whey powder.
This study introduces a method to create porous carbon structures with intricate internal voids. 3D-printed PLA acts as an internal sacrificial template, combined with carbonized whey powder as the porous carbon matrix. Sintering whey powder at 150°C yields solid pieces that, upon carbonization, result in highly porous carbon objects while maintaining the original mold shape. Temperature control ensures successful whey powder sintering before PLA melting. The use of PLA sacrificial templates, along with whey carbonization, allows for developing devices with finely tailored internal voids, as demonstrated through a double Archimedean spiral reactor with porous carbon walls.
https://youtu.be/1CB2HxzpbvE?si=dMTlkWXa9Zfp5laA
We offer the possibility of implementing a lab-made extruder for direct ink writing (DIW) into a conventional fused deposition modelling (FDM) 3D printer. The ink extruder was designed to comply with various requirements including the possibility of using multiple syringe volumes, ease of assembly, compatibility with numerous commercial FDM printers, ink retraction and ink flow control and the ability to extrude inks with a wide range of viscosities (ink yield stresses from 135 to 1100 Pa). The load in the extruder was attained by combining a stepper motor and a gear reduction system. The reduction system was connected to a trapezoidal threaded spindle through a rigid coupler. The movement of the spindle was transmitted to the plunger of a syringe that contained the ink (with volumes ranging from 3 to 30 mL), by means of a linear guide system. Most of the extruder parts were printed with the same FDM printer to which the DIW extruder ended attached to. The DIW extruder wiring connections were simply made by using the E-axis connectors available in the FDM printer. Modifications of the FDM printer software required for the correct control of the DIW extruder were also relatively simple, avoiding firmware modification. This simplicity made the two DIW and FDM heads easily interchangeable, thus amplifying the functionality of a conventional FDM printer. The cost of this new DIW extruder is approx. 100€.
Palabras clave: impresión 3D, fabricación aditiva, carbón poroso, lactosuero, PLA. Fabricación aditiva de materiales de carbono poroso 3D para la intensificación de procesos Introducción La denominada fabricación aditiva ha abierto nuevas posibilidades de aplicación de materiales tradicionales en campos tan variados como la biomedicina, la electroquímica o la intensificación de procesos, todo gracias a la posibilidad de obtener estructuras 3D complejas que no pueden lograrse mediante manufactura convencional [1]. La posibilidad de obtener piezas de carbono mediante fabricación aditiva se encuentra limitada por dos razones fundamentales: la incapacidad de sinterizar polvos de carbón y la necesidad de que cualquier precursor carbonoso mantenga la forma durante la carbonización. En nuestro grupo hemos desarrollado una alternativa basada en el uso de un precursor, el lactosuero, que ofrece una increíble versatilidad de procesado. Así, polvos de lactosuero se pueden sinterizar mediante sinterización selectiva por láser (SLS). Pastas de lactosuero preparadas en base acuosa son, también, precursores adecuados de piezas 3D de carbono poroso a partir de su extrusión en procesos de impresión directa de tintas (DIW). Por último, el empleo de polímeros sostenibles (ácido poliláctico, PLA) como moldes sacrificiales permitiría extender la posibilidad de obtener estructuras 3D complejas a partir de otros precursores como resinas poliméricas. Experimental En el caso de la sinterización selectiva por láser (SLS), los experimentos se realizaron en una impresora 3D Sintratec Kit. Como parámetros de trabajo se han utilizado: una temperatura de impresión de 135 ºC, una altura de capa de 100 μm y una velocidad de láser (Potencia: 2.3 W y longitud de onda (λ): 445 nm) entre 80-200 mm/s. Lo que permite una correcta sinterización del polvo precursor. Para la impresión directa de tintas (DIW) se llevó a cabo una modificación de una impresora 3D de modelado por deposición fundida (FDM). Concretamente, se modificó una impresora Prusa MK3S+, debido a su robustez estructural para soportar la impresión de tinas (DIW). Los parámetros de diseño se establecieron en función de la boquilla de la jeringuilla y de la velocidad de giro del motor, velocidad que se ve afectada por el sistema cinemático instalado en la modificación para impresión de tintas. La boquilla comúnmente utilizada es de 0.61 mm de diámetro, lo que implica una altura de capa de 0.4 mm La velocidad de giro del motor empleada es la correspondiente a una velocidad de impresión de 13.5 mm/s. Por último, el empleo de moldes sacrificiales se obtiene a partir de una impresora 3D FDM Prusa MK3S+ sin modificar con los parámetros convencionales de impresión para un material PLA comercial. Resultados y discusión En todas las técnicas es necesario realizar un post proceso para obtener la pieza final de carbono, con el añadido que durante el proceso de carbonización se produce una reducción isótropa en las dimensiones finales de la pieza en un 23%, independientemente de la técnica utilizada. Cada una de las técnicas aplicadas proporciona capacidades diferentes y la elección de una u otra técnica estaría condicionada, en gran medida, por las restricciones del modelo a imprimir. Figura 1. a) Pieza extraída de la máquina SLS (izquierda), pieza carbonizada SLS (derecha); b) pieza obtenida por DIW (izquierda), la misma pieza carbonizada (derecha), c) molde y modelo (izquierda y centro de la imagen), resultado final de la técnica PLA perdido (derecha). Algunas de esas capacidades se resumen a continuación: • SLS: permite fabricar varias piezas a la vez, además de realizar impresiones con voladizos. Sin embargo, el tiempo total de impresión es el mayor comparado con las otras técnicas. • DIW: permite la fabricación de modelos entramados con una precisión elevada (separación de rejilla mínima de 150 μm). Por el contrario, debido a la utilización de una pasta, se debe controlar el secado durante la impresión para piezas esbeltas. • PLA perdido: es una manera sencilla de obtener moldes, ya que no es necesaria ninguna modificación de la máquina y se emplean condiciones de impresión perfectamente conocidas de polímeros comerciales. Sin embargo, existe la limitación en el tamaño de ranuras o intrincamientos, ya que es un factor afectado por la fluidez del polvo introducido en el molde. Conclusiones A partir del estudio realizado de las diferentes técnicas disponibles para la obtención de piezas de carbono a partir de un precursor, el lactosuero, se concluye que, dependiendo de las restricciones del modelo a fabricar, así como, del volumen de producción a realizar o del tiempo para ejecutar la fabricación, se deberá seleccionar una u otra técnica con la que se obtendrán los mejores resultados finales.
... An up-flow anaerobic sludge bed (UASB) reactor was inoculated with 300 mL of methanogenic sludge derived from a full-scale UASB reactor treating the effluents from a brewery (Sonora, Mexico). As previously reported, this inoculum was mainly comprised by bacteria from the Desulfobacterota, Chloroflexi, and Firmicutes phyla, which contain several fermentative and hydrogenotrophic genera, while the archaeal counterpart was mainly comprised by Methanobacterium (Ramírez-Montoya et al., 2024). This inoculum had a volatile solids (VS) concentration of 26.9 g/L (dry weight). ...
... The MFC setup was constructed using a cylindrical container that measures 18 cm in length and 15 cm in diameter, yielding a total working volume of 3000 mL. Copper mesh electrodes, sized 14 cm by 8 cm, served as both the anode and cathode in all experiments (Sabina-Delgado et al. 2024) and were rinsed with distilled water before use. A salt bridge or proton exchange membrane (PEM) was prepared, consisting of 2% agar and 10% sodium chloride (NaCl) in deionized water, and positioned 1 cm above the base of the container to facilitate the transfer of protons (H + ). ...
... This triggered the possibility of using whey powder in a SLS printer to obtain 3D structures with complex geometries that could be easily transformed into carbon, which is the subject of the present contribution. As for the potential applications of these 3D printed whey-derived porous carbons, it is envisaged their use in tissue engineering and chemical and biochemical process intensification [29][30][31] . Figure 1a shows a scheme of the SLS processing of whey powder. ...
... This triggered the possibility of using whey powder in a SLS printer to obtain 3D structures with complex geometries that could be easily transformed into carbon, which is the subject of the present contribution. As for the potential applications of these 3D printed whey-derived porous carbons, it is envisaged their use in tissue engineering and chemical and biochemical process intensification [29][30][31] . Figure 1a shows a scheme of the SLS processing of whey powder. ...
... While traditional fabrication methods for supercapacitor electrodes are limited in twodimensional designs [30], direct ink writing (DIW) 3D printing offers a novel and versatile approach for fabricating electrodes with customizable architectures [31][32][33]. DIW enables the precise deposition of electrode materials in complex geometries, allowing for optimization of critical factors such as electrode thickness, porosity, and surface area [34][35][36]. These factors are essential for maximizing energy storage performance. ...
... Anaerobic bioreactors amended with 500 mg/L of BMs (OX-GO or magnetite), and an unamended control, were concurrently operated at room temperature for a continuous period of 81 days. The concentration of BMs was established based on previous studies [34,35]. WW was continuously fed into the reactors under three different HRT. ...
... Peaks at 148.77, and 156.30 °C could be associated to water evaporation binding with lactose in SD and WH samples, respectively [87,88,91,92]. The second region for all samples is the related decomposition of di-and polysaccharides, proteins, and amino acids present in the samples [93,94]. ...
... A PRUSA MK3S+ printer (Prusa Research, Czech Republic) was used. The conventional Fused Filament Fabrication (FFF) extruder of the PRUSA MK3S+ was replaced by a Direct Ink Writing (DIW) extruder designed and developed in our lab ( Fig. 1) [30]. The whey paste was printed at 20 mm/s, with a nozzle inner diameter of 0.62 mm and layer height of 0.5 mm. ...
... As a natural, nontoxic material, bentonite is does not introduce harmful byproducts into the solution during adsorption. As bentonite is cost-effective adsorbents, its widespread availability makes it a practical choice for water treatment applications (Acosta-Herrera et al., 2023). Bentonite has unique properties for removing potentially toxic elements such as heavy metals from contaminated water. ...
... Regarding applications of graphene oxide (GO) and reduced graphene oxide (rGO) based materials, these nanostructures were recently proposed for extraction of UV-benzotriazoles and diclofenac in water samples, achieving recovery values between 80.0 and 100 % [33,34]. Considering the high surface area of these graphene-like nanostructures, the main interactions with the organic molecules were assigned to π-stacking, H-bonds and dipole forces interactions. ...