Michiharu Kitano's research while affiliated with Japan Research Institute and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (7)
We use a sparse variational dropout Bayesian neural network (SVDBNNs) to propose an investment strategy that gives consideration to predictive uncertainty. The proposed method is validated through simulation on historical orderbook data from the Tokyo Stock Exchange. Our results were found to outperform other standard non-Bayesian approaches on ris...
While exchanges and regulators are able to observe and analyze the individual behavior of financial market participants through access to labeled data, this information is not accessible by other market participants nor by the general public. A key question, then, is whether it is possible to model individual market participants’ behaviors through...
Financial markets are known to have difficulties in predicting, such as huge elements involved, unsteady internal structure, and existence of the market impact. Even when machine learning and deep learning methods are applied, predictions must include uncertainty, and investment decision making using uncertain prediction may cause large losses and...
Prediction of financial market data with deep learning models has achieved some level of recent success. However, historical financial data suffer from an unknowable state space, limited observations, and the inability to model the impact of your own actions on the market can often be prohibitive when trying to find investment strategies using deep...
Forecasting financial market trends is challenging. Predicting financial market trends always involves uncertainty because the economy is a complex system with a wide variety of interactions. Thus, to consider uncertainty, trends must be estimated stochastically. Conventional machine learning and deep learning methods cannot learn prediction uncert...
Accurate prediction of financial markets is considered one of the most difficult problems due to the nature of its complexity, influenceability, and nonstationarity. Recent financial forecasting applications using neural networks typically have not taken the predictive uncertainty into consideration. Without proper consideration of predictive uncer...
In recent years, predictions by machine learning and deep learning methods are utilized in various scenes of society. A model trained with deep learning methods can predict the target with high accuracy, but can not consider the predictive confidence sufficiently, and may predict high confident for extrapolated data which is hard to predict. In thi...
Citations
... That way, we do not have to find complicated rules for agent behaviour, rather a utility function that agents want to optimize, using the actions available to them. This combination of methods was used successfully for various different systems [28][29][30][31][32][33][34][35]. A generic framework that makes use of this synergy was developed in [36] and expanded with an iterative learning approach in [37]. ...