Michael C Hill's research while affiliated with Case Western Reserve University and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (3)
By silencing specific gene expression, short interfering RNA (siRNA) is a potent biomolecule for regulating cell behavior in tissue engineering applications, and spatially patterning its presentation to cells may ultimately facilitate the engineering of complex tissues. The study by E. Alsberg and team on page 714 demonstrates a hydrogel system tha...
The extracellular environment exposes cells to numerous biochemical and physical signals that regulate their behavior. Strategies for generating continuous gradients of signals in biomaterials may allow for spatial control and patterning of cell behavior, and ultimately aid in the engineering of complex tissues. Short interfering RNA (siRNA) can re...
Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun in...
Citations
... A gradient of complexes PEI/siRNA and a spatial regulation of the GFP expression were achieved along the hydrogel, exhibiting the potential of these systems in organ bioengineering. 163 DEX hydrogels can also be prepared by cross-linking the chains through a Michael addition reaction between thiol groups and vinyl sulfones or acrylates. This type of reaction happens under physiological conditions, preventing the degradation of sensitive biomolecules. ...
... An in vitro degradation profile of BCP-6Sr2Mg2Zn, BCP-6Sr2Mg2Zn-PEU and BCP-6Sr2Mg2Zn-PCL scaffolds (~10 mm × 10 mm) with an average thickness of 2 mm was evaluated in α-MEM medium without ribonucleosides and deoxyribonucleosides (GIBCO™ Invitrogen Corporation, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Cytiva HyClone™ Fetal Bovine Serum (FBS) U.S. Origin, Fisher Scientific, Loughborough, UK), 1% Penicillin/Streptomycin and 1% Amphotericin B (Gibco) at pH = 7.4, according to the method previously used by Jeong and co-workers [41]. Briefly, the dried scaffolds were immersed in the culture medium at a 1:10 ratio of scaffold weight (g) to solution volume (mL) in a constant temperature incubator shaker (37 • C, 100 rpm). ...