April 2003
·
38 Reads
·
64 Citations
Ergodic Theory and Dynamical Systems
A partially hyperbolic diffeomorphism is dynamically coherent if its center, center-stable and center-unstable invariant distributions are integrable, i.e. tangent to foliations. Dynamical coherence is a key assumption in the theory of stable ergodicity. The main result: a partially hyperbolic diffeomorphism f\colon M\to M is dynamically coherent if the strong stable and unstable foliations are quasi-isometric in the universal cover \widetilde{M}, i.e. for any two points in the same leaf, the distance between them in \widetilde{M} is bounded from below by a linear function of the distance along the leaf.