Matthias Kohler's research while affiliated with ETH Zurich and other places

Publications (154)

Article
Quasi-static robotic systems and discrete fabrication strategies fall short of the capabilities needed for automating on-site plastering, which involves operating over large spans and maintaining material continuity. This paper presents continuous, mobile Robotic Plaster Spraying (RPS) – a thin-layer, spray-based printing-in-motion technique using...
Article
Full-text available
In recent years, research in computational design and robotic fabrication in architecture, engineering, and construction (AEC) has made remarkable advances in automating construction processes, both in prefabrication and in-situ fabrication. However, little research has been done on how to leverage human-in-the-loop processes for large-scale roboti...
Chapter
Additive manufactured thermoplastic facades are an emerging topic in the building industry. Such building envelopes have free-form designs, which can enable sustainable solutions. However, the connections between the panels of these thermoplastic facades have not been investigated. These joints are not yet integrated into the 3D-printed facade desi...
Article
Full-text available
This paper describes the design, fabrication, and testing process of an optimised, reinforced concrete ribbed floor slab fabricated using robotically 3D printed formwork. The design of the floor slab is based on the alignment of ribs along the trajectories of the principal bending moments. A workflow is described that generates a rib layout based o...
Conference Paper
Acoustics are rarely included in architectural design because available acoustic analysis tools are cumbersome and require expert knowledge of acoustics. This exclusion from the design phase could lead to late-stage design modifications, potential delays, and increased building costs. On the contrary, their inclusion can improve the acoustic proper...
Article
Full-text available
In this paper, we tackle the task of replacing labor intensive and repetitive manual inspection of sprayed concrete elements with a sensor-based and automated alternative. We present a geometric feedback system that is integrated within a robotic setup and includes a set of depth cameras used for acquiring data on sprayed concrete structures, durin...
Article
Full-text available
The concrete used in floor slabs accounts for large greenhouse gas emissions in building construction. Solid slabs, often used today, consume much more concrete than ribbed slabs built by pioneer structural engineers like Hennebique, Arcangeli and Nervi. The first part of this paper analyses the evolution of slab systems over the last century and t...
Chapter
Full-text available
Most augmented and virtual applications in architecture, engineering, and construction focus on structured and predictable manual activities and routine cases of information exchange such as quality assurance or design review systems. However, collaborative design activities such as negotiation, task specification, and interaction are not yet suffi...
Chapter
We present a design approach that uses machine learning to enhance architect’s design experience. Nowadays, architects and engineers use software for parametric design to generate, simulate, and evaluate multiple design instances. In this paper, we propose a conditional autoencoder that reverses the parametric modelling process and instead allows a...
Article
Full-text available
This paper describes the 1:1 scale application of Robotic Plaster Spraying ( RPS ), a novel, adaptive thin-layer printing technique, using cementitious base coat plaster, realized in a construction setting. In this technique, the print layers are vertical unlike most 3DCP processes. The goal is to explore the applicability and scalability of this s...
Chapter
Full-text available
The Mesh Mould technology combines formwork and structural reinforcement into a robotically fabricated construction system. This method allows for the industrial and full-scale realisation of complex curved, steel-reinforced concrete structures without the need for conventional formwork. The paper presents a new material and cost efficient industri...
Article
Full-text available
Concrete construction harms our environment, making it urgent to develop new methods for building with less materials. Structurally efficient shapes are, however, often expensive to produce, because they require non-standard formworks, thus, standard structures, which use more material than is often needed, remain cheaper. Digital fabrication has t...
Article
Full-text available
This paper illustrates the pedagogical approach to teaching computational design and digital fabrication in the Master of Advanced Studies in Architecture and Digital Fabrication. It demonstrates how the introduction of computational design and digital fabrication methods foster a holistic approach to integrate novel material and constructive syste...
Conference Paper
Full-text available
This paper presents Interactive Robotic Plastering (IRoP), a system enabling designers and skilled workers to engage intuitively with an in-situ robotic plastering process. The research combines three elements: interactive design tools, an augmented reality interface, and a robotic spraying system. Plastering is a complex process relying on tacit k...
Article
Full-text available
The Eggshell fabrication process combines the 3D printing of formwork with the simultaneous casting of a fast-hardening concrete. One limiting factor to reaching mass-market adoption is a suitable reinforcing strategy. In this study, a reinforcement strategy combining steel reinforcing bars with steel fibres is explored. A series of eight beams wer...
Article
Full-text available
In this paper, we tackle the challenge of detection and accurate digital reconstruction of steel rebar meshes using a set of industrial depth cameras. A construction example under investigation in this paper is robotic concrete spraying, where material is sprayed onto double-curved single layered rebar meshes. Before the spraying process can start,...
Conference Paper
Full-text available
The paper demonstrates a novel approach to performance-driven acoustic design of architectural diffusive surfaces. It uses unsupervised machine learning techniques to analyze and explore the GIR Dataset, an extensive collection of real impulse responses and acoustically diffusive surfaces. The presented approach enables designers to explore many al...
Preprint
In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acousti...
Conference Paper
Full-text available
Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3...
Article
This article introduces the concept of Impact Printing, a new additive manufacturing (AM) method that aggregates malleable discrete elements (or soft particles) by a robotic shooting process. The bonding between the soft particles stems from the transformation of kinetic energy, gained during the acceleration phase, into plastic deformation upon im...
Conference Paper
Acoustic performance is an important criterion for architectural design. Much is known about sound absorption, but little about sound scattering, although it is equally important for improving the acoustic quality of built spaces. This paper presents an alternative workflow for the computational design and evaluation of acoustic diffusion panels, w...
Article
Full-text available
Embedded in a long tradition of craftsmanship, inside or outside building surfaces, is often treated with plaster, which plays both functional and ornamental roles. Today, plasterwork is predominantly produced through rationalized, time-, and cost-efficient processes, used for standardized building elements. These processes have also gained interes...
Article
Full-text available
This paper presents an interactive design system that allows the user to create and fabricate stylized sculptures in water-based clay, using a standard 6-axis robot arm. This system facilitates the materialization of abstract design intentions into clay, through the algorithmic formulation of sculpting styles, the optimal path planning of the sculp...
Article
Full-text available
In architectural construction, automated robotic assembly is challenging due to occurring tolerances, small series production and complex contact situations, especially in assembly of elements with form-closure such as timber structures with integral joints. This paper proposes to apply Reinforcement Learning to control robot movements in contact-r...
Preprint
Full-text available
In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine inst...
Article
The point-by-point wire and arc additive manufacturing technology allows precisely depositing of high strength material. In combination with a robotic arm and sensing techniques during printing, it can be used as a novel efficient joining method for custom structural steel components. For accessibility to the parts to be joined, flexibility on the...
Article
Building large and stable structures from highly irregular stones is among the most challenging construction tasks with excavators. In this letter, we present a method for grasp planning and object manipulation that enables the world's first autonomous assembly of a large-scale stone wall with an unmanned hydraulic excavator system. Our method util...
Conference Paper
Full-text available
This paper presents a novel robotic assembly method for timber structures with integral timber joints, specifically, crossed-half-lap joints. The proposed method uses a set of custom-built, remote-controlled, high-force robotic clamps to operate in collaboration with an industrial robotic arm to overcome challenges of robotic timber joint assembly,...
Article
Full-text available
In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acousti...
Article
Full-text available
Augmented bricklaying explores the manual construction of intricate brickwork through visual augmentation, and applies and validates the concept in a real-scale building project—a fair-faced brickwork facade for a winery in Greece. As shown in previous research, robotic systems have proven to be very suitable to achieve various differentiated brick...
Article
Full-text available
Industrialization of architectural components and technological advances have had a significant impact on how we design and build. These developments, resulting in mass-produced and panelized architectural components, have rationalized building construction. However, they often do not reveal the true potential of the inherent qualities of malleable...
Article
Full-text available
On-site robotic construction not only has the potential to enable architectural assemblies that exceed the size and complexity practical with laboratory-based prefabrication methods, but also offers the opportunity to leverage context-specific, locally sourced materials that are inexpensive, abundant, and low in embodied energy. We introduce a proc...
Article
Full-text available
En esta sección se presentan tres diferentes propuestas sobre fabricación robótica como procesos de diseño dinámico, estudiando la relación entre diseño computacional, fabricación digital y sistemas de materiales complejos en diferentes formatos de enseñanza dentro del departamento de arquitectura de la ETH de Zúrich. Todos estos proyectos exploran...
Article
In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine inst...
Article
Over the past decade innovative techniques for shaping concrete have emerged, all aiming to use less material and reduce the need for traditional formwork. One very promising method is to shape concrete dynamically: referred to as Smart Dynamic Casting (SDC), this process was pioneered in 2012 as the first robotically-driven system for slipforming...
Chapter
Full-text available
This paper describes the design and fabrication process of a concrete column cast in ultra-thin, 3D printed formwork, using a process known as Eggshell. The column was prefabricated as part of a real-world construction project, serving as the main load-bearing element for a reciprocal timber frame structure. The fabrication of the column required u...
Chapter
Full-text available
Digital Fabrication with Concrete (DFC) brings many new possibilities for the design and production of concrete structures, promising to revolutionise the concrete construction industry. While technological and material challenges have already been overcome to a large extent, there is still a lack of sufficiently mature reinforcement solutions. The...
Chapter
Digital concrete technologies aim to minimize or eliminate the need for formwork, produce less waste, and build material efficient designs at increased productivity. This paper discusses how Admixture Controlled Digital Casting (ACDC) could address these aims by producing thin folded structures. For the process, a set on demand concrete composition...
Article
DOWNLOAD LINK: https://authors.elsevier.com/a/1apE13IhXMjNct _____________________________________________________________________________ Concrete is a highly versatile construction material, not only for the reason that it has excellent properties in terms of structural performance, building physics, availability and price, but also because it ca...
Article
Full-text available
In this paper, we present novel techniques and tools for mobile robotic in situ fabrication of fibre reinforced granular structures outdoors. The research focuses on Jammed Architectural Structures (JAS), a material system that combines granular jamming with strategically placed reinforcement creating robust yet fully reversible structures from cru...
Article
Full-text available
The construction industry is a slow adopter of new technologies and materials. However, interdisciplinary research efforts in digital fabrication methods with concrete aim to make a real impact on the way we build by showing faster production, higher quality and enlarged freedom of design. In this paper, the potential and constraints of a specific...
Article
We present a computational technique that aids with the design of structurally‐sound metal frames, tailored for robotic fabrication using an existing process that integrate automated bar bending, welding, and cutting. Aligning frames with structurally‐favorable orientations, and decomposing models into fabricable units, we make the fabrication proc...
Article
Full-text available
Concrete is a material favored by architects and builders alike due to its high structural strength and its ability to take almost any form. However, to shape concrete structures, heavy-duty formwork is usually necessary to support the fresh concrete while curing. To expand geometrical freedom, three-dimensional (3D) printed concrete formwork has e...
Conference Paper
Full-text available
This paper describes the making of DFAB HOUSE, a multi-technology demonstrator of digital fabrication in architecture, engineering and construction (AEC). While most individual digital fabrication technologies used to build DFAB HOUSE have been presented independently at conferences and in journal articles, this paper describes how, in concert, the...
Chapter
The technological advances in robotic construction equipment for large scale earth moving is revolutionizing how we think and act on terrain. With the development of HEAP, a full scale autonomous walking excavator by the Robotic Systems Lab of Professor Marco Hutter within the NCCR Digital Fabrication ETH Zurich [1], we will be able to shape large-...
Chapter
Digital fabrication with concrete holds potential to rationalize the production of large-scale mass-customized shapes in architecture. However, these digital technologies have manifold requirements for concrete compared to ordinary casting due to the relatively long production time combined with the need for fast strength build-up after placing. Th...
Chapter
This paper presents a novel application of volumetric modelling (VM) for the design of fabrication-informed three-dimensional deposition paths for in place spatial additive manufacturing (AM). VM offers modelling techniques for designing with great geometric flexibility using numeric data, as well as for managing fabrication constraints. To address...
Chapter
Full-text available
This research is developed within the Master of Advanced Studies in Architecture and Digital Fabrication program at ETH Zurich. This paper presents a novel constructive system made solely of wood, enabled by a cooperative robotic fabrication process. The constructive system builds on recent developments in dowel-laminated timber (DLT) as well as ad...
Article
Full-text available
full-text view-only version: https://rdcu.be/bQKlB The development of novel robotic fabrication technologies in architecture concentrates largely on integrating stationary industrial-type robots into off-site prefabrication processes. By contrast, few enabling robotic technologies exist today that allow robotic fabrication processes to be mobile...
Conference Paper
Full-text available
This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly d...
Conference Paper
Full-text available
Digital fabrication technology such as robotic fabrication and 3D printing shows promise to provide customized building components at lower cost while also improving efficiency, reducing waste, and increasing on-site safety. However, the application of digital fabrication in construction is still in its early stages. Digital fabrication differs fun...
Conference Paper
Full-text available
This research paper presents a novel method for robotic spraying of glass-fibre reinforced concrete (GFRC) on a permeable reinforcement mesh. In this process, the mesh acts as a functional formwork during the concrete spraying process and as reinforcement once the concrete is cured, with the goal of producing slender reinforced concrete elements ef...
Article
Full-text available
For robotic fabrication of wooden structures, the simple, quick and tight joining of elements can be solved using swelling hardwood dowels. This topic has been the focus of the present study, and the set-recovery capacity of densified wood (dW) as dowel material was investigated. European beech was compressed in the radial direction at 103°C and 10...
Chapter
Digital fabrication with concrete has for more than a decade been of high interest in both research institutions and industries. A particular interest has been set on Contour Crafting, a type of layered extrusion with concrete, which in recent years has been used for the fabrication of single and multi-story buildings. However, these have been done...
Chapter
This paper presents a project developed within the Master of Advanced Studies in Architecture and Digital Fabrication programme at ETH Zurich. The Brick Labyrinth is the first large-scale construction built in the Robotic Fabrication Laboratory, a unique multi-robotic setup for automated prefabrication at architectural scale. The project continues...
Chapter
The research presented in this paper investigates novel techniques and tools for robotic fabrication of fibre reinforced granular structures built without any type of formwork. Combining granular jamming with strategically placed, continuous reinforcement, allows for precise fabrication of Jammed Architectural Structures (JAS) out of crushed rock a...