November 2024
·
23 Reads
Communications Biology
Tree successional diversity is evident even to casual observers and has a well-understood physiological basis. Various life history trade-offs, driven by interspecific variation in a single trait, help maintain this diversity. Conspecific negative density dependence (CNDD) is also well-documented and reduces tree vital rates independently of succession strategies. The CNDD hypothesis is frequently justified by specialist natural enemies at a separate trophic level. We integrate these processes into an analytical demographic model, spanning short-term plant physiological responses to the dynamics of a large forest mosaic connected to a metacommunity. Surprisingly, multiple trade-offs do not necessarily increase diversity, as suboptimal trait combinations lead to strategies that cannot compete for successional niches, explaining the weak correlation between functional traits and succession position. Succession alone can sustain half of the species in the metacommunity, with diversity increasing linearly with CNDD strength. The steeper increase with larger metacommunities suggests CNDD plays a greater role in tropical forests. However, if each successional type contains multiple equivalent species, CNDD maintains diversity but becomes less effective in promoting successional diversity, consistent with some tropical forests being less successional diverse. Additionally, CNDD enhances the likelihood of successful speciation and shifts life-history trait frequency by affecting more late-successional species.